Arsenic in rice grain is dominated by two species: the carcinogen inorganic arsenic (the sum of arsenate and arsenite) and dimethylarsinic acid (DMA). Rice is the dominant source of inorganic arsenic into the human diet. As such, there is a need to identify sources of low-inorganic arsenic rice globally. Here we surveyed polished (white) rice across representative regions of rice production globally for arsenic speciation. In total 1180 samples were analysed from 29 distinct sampling zones, across 6 continents. For inorganic arsenic the global x was 66 μg/kg, and for DMA this figure was 21 μg/kg. DMA was more variable, ranging from < 2 to 690 μg/kg, while inorganic arsenic ranged from < 2 to 399 μg/kg. It was found that inorganic arsenic dominated when grain sum of species was < 100 μg/kg, with DMA dominating at higher concentrations. There was considerable regional variance in grain arsenic speciation, particularly in DMA where temperate production regions had higher concentrations. Inorganic arsenic concentrations were relatively consistent across temperate, subtropical and northern hemisphere tropical regions. It was only in southern hemisphere tropical regions, in the eastern hemisphere that low-grain inorganic arsenic is found, namely East Africa (x < 10 μg/kg) and the Southern Indonesian islands (x < 20 μg/kg). Southern hemisphere South American rice was universally high in inorganic arsenic, the reason for which needs further exploration.
One of cadmium's major exposure routes to humans is through rice consumption. The concentrations of cadmium in the global polished (white), market rice supply-chain were assessed in 2270 samples, purchased from retailers across 32 countries, encompassing 6 continents. It was found on a global basis that East Africa had the lowest cadmium with a median for both Malawi and Tanzania at 4.9 μg/kg, an order of magnitude lower than the highest country, China with a median at 69.3 μg/ kg. The Americas were typically low in cadmium, but the Indian sub-continent was universally elevated. In particular certain regions of Bangladesh had high cadmium, that when combined with the high daily consumption rate of rice of that country, leads to high cadmium exposures. Concentrations of cadmium were compared to the European Standard for polished rice of 200 μg/kg and 5% of the global supply-chain exceeded this threshold. For the stricter standard of 40 μg/kg for processed infant foods, for which rice can comprise up to 100% by composition (such as rice porridges, puffed rice cereal and cakes), 25% of rice would not be suitable for making pure rice baby foods. Given that rice is also elevated in inorganic arsenic, the only region of the world where both inorganic arsenic and cadmium were low in grain was East Africa.
Legumes form a very important component in Malawi's cropping systems because of their roles in food security, income generation and soil fertility improvement through biological nitrogen fixation (BNF). They are commonly grown in various cropping systems including sole cropping, cereal-legume intercrops and legume-legume intercrops (also commonly referred to as "doubled-up"). However, information on BNF by the pigeon pea and cowpea under doubled-up system is scanty. Therefore, a study was conducted at two sites of Lilongwe and Dowa in the 2013/14 growing season, to quantify and compare the amounts of biologically fixed nitrogen in the three legume cropping systems. The experiments were laid out in a randomized complete block design and BNF was estimated using the modified nitrogen difference method. Results showed that there were significant differences (P < 0.05) in nodule numbers, nodule dry weights, and quantities of N 2 fixed per unit area due to cropping systems' effects at both sites. Sole cropped pigeon pea produced the highest N 2 fixed (92.9 kg N ha ) by 33%. From this study it can be noted that all three legume cropping systems can lead to substantial amounts of biologically fixed nitrogen, but their implementation should consider both combinations and environmental factors for specific sites.
Resilient cropping systems are required to achieve food security in the presence of climate change, and so several long-term conservation agriculture (CA) trials have been established in southern Africa – one of them at the Chitedze Agriculture Research Station in Malawi in 2007. The present study focused on a longitudinal analysis of 10 years of data from the trial to better understand the joint effects of variations between the seasons and particular contrasts among treatments on yield of maize. Of further interest was the variability of treatment responses in time and space and the implications for design of future trials with adequate statistical power. The analysis shows treatment differences of the mean effect which vary according to cropping season. There was a strong treatment effect between rotational treatments and other treatments and a weak effect between intercropping and monocropping. There was no evidence for an overall advantage of systems where residues are retained (in combination with direct seeding or planting basins) over conventional management with respect to maize yield. A season effect was evident although the strong benefit of rotation in El Niño season was also reduced, highlighting the strong interaction between treatment and climatic conditions. The power analysis shows that treatment effects of practically significant magnitude may be unlikely to be detected with just four replicates, as at Chitedze, under either a simple randomised control trial or a factorial experiment. Given logistical and financial constraints, it is important to design trials with fewer treatments but more replicates to gain enough statistical power and to pay attention to the selection of treatments to given an informative outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.