Multilayer networks are attracting growing attention in many fields, including finance. In this paper, we develop a new tractable procedure for multilayer aggregation based on statistical validation, which we apply to investor networks. Moreover, we propose two other improvements to their analysis: transaction bootstrapping and investor categorization. The aggregation procedure can be used to integrate security-wise and time-wise information about investor trading networks, but it is not limited to finance. In fact, it can be used for different applications, such as gene, transportation, and social networks, were they inferred or observable. Additionally, in the investor network inference, we use transaction bootstrapping for better statistical validation. Investor categorization allows for constant size networks and having more observations for each node, which is important in the inference especially for less liquid securities. Furthermore, we observe that the window size used for averaging has a substantial effect on the number of inferred relationships. We apply this procedure by analyzing a unique data set of Finnish shareholders during the period 2004–2009. We find that households in the capital have high centrality in investor networks, which, under the theory of information channels in investor networks suggests that they are well-informed investors.
Recent studies using data on social media and stock markets have mainly focused on predicting stock returns. Instead of predicting stock price movements, we examine the relation between Facebook data and investors' decision making in stock markets with a unique data on investors' transactions on Nokia. We find that the decisions to buy versus sell are associated with Facebook data especially for passive households and also for nonprofit organizations. At the same time, it seems that more sophisticated investors-financial and insurance institutions-are behaving independently from Facebook activities.
In recent years, methods from network science are gaining rapidly interest in economics and finance. A reason for this is that in a globalized world the interconnectedness among economic and financial entities are crucial to understand and networks provide a natural framework for representing and studying such systems. In this paper, we are surveying the use of networks and network-based methods for studying economy related questions. We start with a brief overview of graph theory and basic definitions. Then we discuss descriptive network measures and network 1 arXiv:1710.04455v1 [q-fin.CP] 12 Oct 2017 complexity measures for quantifying structural properties of economic networks. Finally, we discuss different network and tree structures as relevant for applications.
The complex networks approach has been gaining popularity in analysing investor behaviour and stock markets, but within this approach, initial public offerings (IPOs) have barely been explored. We fill this gap in the literature by analysing investor clusters in the first two years after the IPO filing in the Helsinki Stock Exchange by using a statistically validated network method to infer investor links based on the co-occurrences of investors' trade timing for 69 IPO stocks. Our findings show that a rather large part of statistically similar network structures form in different securities and persist in time for mature and IPO companies. We also find evidence of institutional herding.International Securities Identification Number (ISIN), company, industry, total number of transactions, total number of unique investors and the IPO day of the security. ISINs from the error-free set are marked in bold PALGRAVE COMMUNICATIONS | https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.