A novel approach that uses the concepts of parallel imaging to grid data sampled along a non-Cartesian trajectory using GRAPPA operator gridding (GROG) is described. GROG shifts any acquired data point to its nearest Cartesian location, thereby converting non-Cartesian to Cartesian data. Unlike other parallel imaging methods, GROG synthesizes the net weight for a shift in any direction from a single basis set of weights along the logical k-space directions. Given the vastly reduced size of the basis set, GROG calibration and reconstruction requires fewer operations and less calibration data than other parallel imaging methods for gridding. Instead of calculating and applying a density compensation function (DCF), GROG requires only local averaging, as the reconstructed points fall upon the Cartesian grid. Simulations are performed to demonstrate that the root mean square error (RMSE) values of images gridded with GROG are similar to those for images gridded using the gold-standard convolution gridding. Finally, GROG is compared to the convolution gridding technique using data sampled along radial, spiral, rosette, and BLADE (a.k.a.
BackgroundThe standard clinical acquisition for left ventricular functional parameter analysis with cardiovascular magnetic resonance (CMR) uses a multi-breathhold multi-slice segmented balanced SSFP sequence. Performing multiple long breathholds in quick succession for ventricular coverage in the short-axis orientation can lead to fatigue and is challenging in patients with severe cardiac or respiratory disorders. This study combines the encoding efficiency of a six-fold undersampled 3D stack of spirals balanced SSFP sequence with 3D through-time spiral GRAPPA parallel imaging reconstruction. This 3D spiral method requires only one breathhold to collect the dynamic data.MethodsTen healthy volunteers were recruited for imaging at 3 T. The 3D spiral technique was compared against 2D imaging in terms of systolic left ventricular functional parameter values (Bland-Altman plots), total scan time (Welch’s t-test) and qualitative image rating scores (Wilcoxon signed-rank test).ResultsSystolic left ventricular functional values were not significantly different (i.e. 3D-2D) between the methods. The 95% confidence interval for ejection fraction was −0.1 ± 1.6% (mean ± 1.96*SD). The total scan time for the 3D spiral technique was 48 s, which included one breathhold with an average duration of 14 s for the dynamic scan, plus 34 s to collect the calibration data under free-breathing conditions. The 2D method required an average of 5min40s for the same coverage of the left ventricle. The difference between 3D and 2D image rating scores was significantly different from zero (Wilcoxon signed-rank test, p < 0.05); however, the scores were at least 3 (i.e. average) or higher for 3D spiral imaging.ConclusionThe 3D through-time spiral GRAPPA method demonstrated equivalent systolic left ventricular functional parameter values, required significantly less total scan time and yielded acceptable image quality with respect to the 2D segmented multi-breathhold standard in this study. Moreover, the 3D spiral technique used just one breathhold for dynamic imaging, which is anticipated to reduce patient fatigue as part of the complete cardiac examination in future studies that include patients.Electronic supplementary materialThe online version of this article (doi:10.1186/s12968-014-0065-1) contains supplementary material, which is available to authorized users.
Peripheral immune cells are critical to the pathogenesis of neurodegenerative diseases including multiple sclerosis (MS) (Hendriks et al., 2005; Kasper and Shoemaker, 2010). However, the precise sequence of tissue events during the early asymptomatic induction phase of experimental autoimmune encephalomyelitis (EAE) pathogenesis remains poorly defined. Due to the spatial-temporal constrains of traditional methods used to study this disease, most studies had been performed in the spine during peak clinical disease; thus the debate continues as to whether tissue changes such as vessel disruption represents a cause or a byproduct of EAE pathophysiology in the cortex. Here, we provide dynamic, high-resolution information on the evolving structural and cellular processes within the grey matter of the mouse cortex during the first 12 asymptomatic days of EAE induction. We observed that transient focal vessel disruptions precede microglia activation, followed by infiltration of and directed interaction between circulating dendritic cells and T cells. Histamine antagonist minimizes but not completely ameliorates blood vessel leak. Histamine H1 receptor blockade prevents early microglia function, resulting in subsequent reduction in immune cell accumulation, disease incidence and clinical severity.
The quantification of cardiac T relaxation time holds great potential for the detection of various cardiac diseases. However, as a result of both cardiac and respiratory motion, only one two-dimensional T map can be acquired in one breath-hold with most current techniques, which limits its application for whole heart evaluation in routine clinical practice. In this study, an electrocardiogram (ECG)-triggered three-dimensional Look-Locker method was developed for cardiac T measurement. Fast three-dimensional data acquisition was achieved with a spoiled gradient-echo sequence in combination with a stack-of-spirals trajectory and through-time non-Cartesian generalized autocalibrating partially parallel acquisition (GRAPPA) acceleration. The effects of different magnetic resonance parameters on T quantification with the proposed technique were first examined by simulating data acquisition and T map reconstruction using Bloch equation simulations. Accuracy was evaluated in studies with both phantoms and healthy subjects. These results showed that there was close agreement between the proposed technique and the reference method for a large range of T values in phantom experiments. In vivo studies further demonstrated that rapid cardiac T mapping for 12 three-dimensional partitions (spatial resolution, 2 × 2 × 8 mm ) could be achieved in a single breath-hold of ~12 s. The mean T values of myocardial tissue and blood obtained from normal volunteers at 3 T were 1311 ± 66 and 1890 ± 159 ms, respectively. In conclusion, a three-dimensional T mapping technique was developed using a non-Cartesian parallel imaging method, which enables fast and accurate T mapping of cardiac tissues in a single short breath-hold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.