The initial steps in assimilation of sulfate during cysteine biosynthesis entail sulfate uptake and sulfate activation by formation of adenosine 5'-phosphosulfate, conversion to 3'-phosphoadenosine 5'-phosphosulfate, and reduction to sulfite. Mutations in a previously uncharacterized Escherichia coli gene, cysQ, which resulted in a requirement for sulfite or cysteine, were obtained by in vivo insertion of transposons TnStacl and TnSsupF and by in vitro insertion of resistance gene cassettes. cysQ is at chromosomal position 95.7 min (kb 4517 to 4518) and is transcribed divergently from the adjacent cpdB gene. A TnStacl insertion just inside the 3' end of cysQ, with its isopropyl-4-D-thiogalactopyranoside-inducible tac promoter pointed toward the cysQ promoter, resulted in auxotrophy only when isopropyl-4-D-thiogalactopyranoside was present; this conditional phenotype was ascribed to collision between converging RNA polymerases or interaction between complementary antisense and cysQ mRNAs. The auxotrophy caused by cysQ null mutations was leaky in some but not all E. coli strains and could be compensated by mutations in unlinked genes. cysQ mutants were prototrophic during anaerobic growth. Mutations in cysQ did not affect the rate of sulfate uptake or the activities of ATP sulfurylase and its protein activator, which together catalyze adenosine 5'-phosphosulfate synthesis. Some mutations that compensated for cysQ null alleles resulted in sulfate transport defects. cysQ is identical to a gene called amtA, which had been thought to be needed for ammonium transport. Computer analyses, detailed elsewhere, revealed significant amino acid sequence homology between cysQ and suhB of E. coli and the gene for mammalian inositol monophosphatase. Previous work had suggested that 3'-phosphoadenoside 5'-phosphosulfate is toxic if allowed to accumulate, and we propose that CysQ helps control the pool of 3'-phosphoadenoside 5'-phosphosulfate, or its use in sulfite synthesis.The cysteine biosynthetic pathway (Fig. 1), a principal route of sulfur assimilation, involves more than 15 genes in at least five chromosomal regions in Escherichia coli and Salmonella typhimurium. It has been studied since the early days of physiological genetics in order to elucidate the roles of the individual genes, the control of their expression, and how the flow of metabolic intermediates is regulated (for a review, see reference 25). The transcription of most cys genes is positively controlled by the protein product of cysB and its coinducer, O-acetyl serine (also a cysteine precursor), during aerobic growth; transcription is repressed by sulfide, which is generated by reversal of the final biosynthetic step (Fig. 1). CysB seems not to be needed during anaerobic growth (3). The cysQ gene described here is also needed only during aerobic growth. It is inferred to act before sulfite formation, and hence this early part of the cysteine pathway is reviewed briefly below.The initial step, sulfate uptake, is mediated by a permease encoded by the cysT, cysW,...
Glioma is the most aggressive brain tumor of the central nervous system. The ability of glioma cells to migrate, rapidly diffuse and invade normal adjacent tissue, their sustained proliferation, and heterogeneity contribute to an overall survival of approximately 15 months for most patients with high grade glioma. Numerous studies indicate that non-coding RNA species have critical functions across biological processes that regulate glioma initiation and progression. Recently, new data emerged, which shows that the cross-regulation between long non-coding RNAs and small non-coding RNAs contribute to phenotypic diversity of glioblastoma subclasses. In this paper, we review data of long non-coding RNA expression, which was evaluated in human glioma tissue samples during a five-year period. Thus, this review summarizes the following: (I) the role of non-coding RNAs in glioblastoma pathogenesis, (II) the potential application of non-coding RNA species in glioma-grading, (III) crosstalk between lncRNAs and miRNAs (IV) future perspectives of non-coding RNAs as biomarkers for glioma.
Best differentiation between HGG and LGG is obtained from rCBV, Cho/Cr, and Cho/NAA metrics. MTS could not be reliably distinguished from HGG by the methods investigated.
Enterobacteria have developed numerous constitutive and inducible strategies to sense and adapt to an external acidity. These molecular responses require dozens of specific acid shock proteins (ASPs), as shown by genomic and proteomic analysis. Most of the ASPs remain poorly characterized, and their role in the acid response and survival is unknown. We recently identified an Escherichia coli gene, asr (acid shock RNA), encoding a protein of unknown function, which is strongly induced by high environmental acidity (pH < 5.0). We show here that Asr is required for growth at moderate acidity (pH 4.5) as well as for the induction of acid tolerance at moderate acidity, as shown by its ability to survive subsequent transfer to extreme acidity (pH 2.0). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analysis of acid-shocked E. coli cells harboring a plasmid-borne asr gene demonstrated that the Asr protein is synthesized as a precursor with an apparent molecular mass of 18 kDa. Mutational studies of the asr gene also demonstrated the Asr preprotein contains 102 amino acids. This protein is subjected to an N-terminal cleavage of the signal peptide and a second processing event, yielding 15-and 8-kDa products, respectively. Only the 8-kDa polypeptide was detected in acid-shocked cells containing only the chromosomal copy of the asr gene. N-terminal sequencing and site-directed mutagenesis revealed the two processing sites in the Asr protein precursor. Deletion of amino acids encompassing the processing site required for release of the 8-kDa protein resulted in an acid-sensitive phenotype similar to that observed for the asr null mutant, suggesting that the 8-kDa product plays an important role in the adaptation to acid shock. Analysis of Asr:PhoA fusions demonstrated a periplasmic location for the Asr protein after removal of the signal peptide. Homologues of the asr gene from other Enterobacteriaceae were cloned and shown to be induced in E. coli under acid shock conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.