The hydrodynamic separation of spherical particles in flows at low Reynolds numbers is a very active area of research in microfluidic engineering due to the many important biomedical applications. In particular, curved channels such as spiral channels are of growing interest because the lift and drag force exerted on inertial particles can be used to hydrodynamically separate the particles. In this paper we present a scale invariant classification of the lateral focusing of particles in highly curved spiral micro channels with a square cross section. We then use this scale invariant classification to demonstrate the separation of particles in two-particle mixtures across a large range of sizes. We thus show that our results can be used to systematically design the geometry of devices and select flow parameters to separate particles by size in a mixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.