Heart failure (HF) manifestation and progression are driven by systemic activation of neuroendocrine signaling cascades, such as the renin-angiotensin aldosterone system (RAAS). Fibroblast growth factor 23 (FGF23), an endocrine hormone, is linked to HF and cardiovascular mortality. It is also a mediator of left-ventricular hypertrophy (LVH). In vivo, high circulating levels of FGF23 are associated with an altered systemic RAAS response. FGF23 is proposed to trigger pathological signaling mediated by Ca-regulated transcriptional pathways. In the present study, we investigated Ca-dependent signaling of FGF23 in ventricular cardiomyocytes and its association with angiotensin II (ATII). In neonatal rat ventricular myocytes (NRVMs), both ATII and FGF23 induced hypertrophy as observed by an increase in cell area and hypertrophic gene expression. Furthermore, FGF23 activates nuclear Ca-regulated CaMKII-HDAC4 pathway, similar to ATII. In addition to a global increase in cytoplasmic Ca, FGF23, like ATII, induced inositol 1, 4, 5-triphosphate (IP3)-induced Ca release from the nucleoplasmic Ca store, associated with cellular hypertrophy. Interestingly, ATII receptor antagonist, losartan, significantly attenuated FGF23-induced changes in Ca homeostasis and cellular hypertrophy suggesting an involvement of ATII receptor-mediated signaling. In addition, application of FGF23 increased intracellular expression of ATII peptide and its secretion in NRVMs, confirming the participation of ATII. In conclusion, FGF23 and ATII share a common mechanism of IP3-nuclear Ca-dependent cardiomyocyte hypertrophy. FGF23-mediated cellular hypertrophy is associated with increased production and secretion of ATII by cardiomyocytes. These findings indicate a pathophysiological role of the cellular angiotensin system in FGF23-induced hypertrophy in ventricular cardiomyocytes.
Treatment of hypertension-mediated cardiac damage with left ventricular (LV) hypertrophy (LVH) and heart failure remains challenging. To identify novel targets, we performed comparative transcriptome analysis between genetic models derived from stroke-prone spontaneously hypertensive rats (SHRSP). Here, we identified carboxypeptidase X 2 (Cpxm2) as a genetic locus affecting LV mass. Analysis of isolated rat cardiomyocytes and cardiofibroblasts indicated Cpxm2 expression and intrinsic upregulation in genetic hypertension. Immunostaining indicated that CPXM2 associates with the t-tubule network of cardiomyocytes. The functional role of Cpxm2 was further investigated in Cpxm2-deficient (KO) and wild-type (WT) mice exposed to deoxycorticosterone acetate (DOCA). WT and KO animals developed severe and similar systolic hypertension in response to DOCA. WT mice developed severe LV damage, including increases in LV masses and diameters, impairment of LV systolic and diastolic function and reduced ejection fraction. These changes were significantly ameliorated or even normalized (i.e., ejection fraction) in KO-DOCA animals. LV transcriptome analysis showed a molecular cardiac hypertrophy/remodeling signature in WT but not KO mice with significant upregulation of 1234 transcripts, including Cpxm2, in response to DOCA. Analysis of endomyocardial biopsies from patients with cardiac hypertrophy indicated significant upregulation of CPXM2 expression. These data support further translational investigation of CPXM2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.