In the current study, the influence of plasticizer level on drug release was investigated for solid dosage forms prepared by hot-melt extrusion and film coating. The properties of two highly water-soluble compounds, diltiazem hydrochloride (DTZ) and chlorpheniramine maleate (CPM), and a poorly water-soluble drug, indomethacin (IDM), were investigated in the melt extrudates containing either Eudragit RSPO or Eudragit RD 100 and triethyl citrate (TEC) as the plasticizer. In addition, pellets containing DTZ were film coated with Eudragit RS 30D and varying levels of TEC using a fluidized bed coating unit. Differential scanning calorimetry (DSC) demonstrated that both CPM and IDM exhibited a plasticization effect on the acrylic polymers, whereas no plasticizing effect by DTZ on Eudragit RSPO was observed. Thermogravimetric analysis (TGA) was used to investigate the thermal stability of the DTZ, Eudragit RSPO and TEC at 140 degrees C, the maximum temperature used in the hot-melt extrusion process. The chemical stability of DTZ and IDM in the extrudate following hot-melt processing was determined by high pressure liquid chromatography (HPLC). Drug release rates of both DTZ and CPM from hot-melt extrudates increased with an increase in the TEC level in the formulations, while the release rate of DTZ from the Eudragit RS 30D-coated pellets decreased with an increase in TEC in the coating dispersion. This phenomenon was due to the formation of a reservoir polymeric structure as a result of the thermal stress and shear stress involved in the hot-melt extrusion process regardless of the TEC level. In contrast, coalescence of the polymer particles in the film coating process was enhanced with higher levels of TEC, as demonstrated by scanning electron microscopy (SEM). The addition of TEC (0% to 8%) in the IDM hot-melt extrudate formulation had no influence on the drug release rate as the drug release rate was controlled by drug diffusion through the inside of the polymeric materials rather than between the polymer particles.
Nifedipine (N) and nifedipine. Pluronic F-68 solid dispersion (SD) pellets were developed and characterizedfor drug release mechanisms from a multi-unit erosion matrix system for controlled release. Nifedipine was micronized using a jet mill. Solid dispersion with Pluronic F-68 was prepared by the fusion method. Nifedipine and SD were characterized by particle size analysis, solubility, differential scanning calorimetry (DSC), and x-ray diffraction (XRD) studies. Samples were subsequently processed into matrix pellets by extrusion/spheronization using Eudragit L 100-55 and Eudragit S 100 as release rate-controlling polymers. Drug release mechanisms from pellets were characterized by microscopy and mercury intrusion porosimetry; DSC and XRD studies indicated no polymorphic changes in N after micronization and also confirmed the formation of SD of N with Pluronic F-68. Pellets of N showed a 24-hr drug release profile following zero-order kinetics. Pellets of SD showed a 12-hr release profile followingfirst-order kinetics. Aqueous solubility of N after SD formation was found to be increased 10-fold. Due to increased solubility of N in SD, the drug release mechanism from the multi-unit erosion matrix changed from pure surface erosion to an erosion/diffusion mechanism, thereby altering the release rate and kinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.