Nanoscience application plays a major role in heat transfer related problems. A nanofluid is basically a suspension of fine sized nanomaterials in base fluids like water, Therminol VP-1, ethylene glycol, and other heat transfer fluids. This paper evaluates the possible application of nanofluid in parabolic shaped concentrating solar collector using both experimental and CFD analysis. Different types of nanomaterials used are SiO2and CuO of 20 nm average size. Nanofluids of SiO2-H2O (DI) and CuO-H2O (DI) of 0.01% volume concentration are used. Flow rates of 40 LPH and 80 LPH are used. ANSYS FLUENT 14.5 is used for carrying out CFD investigation. 3D temperature distribution of absorber tube is obtained using numerical investigation and the result is compared with the experimental one. Improvement in efficiency of collector of about 6.68% and 7.64% is obtained using 0.01% vol. conc. SiO2-H2O (DI) nanofluid and 0.01% vol. conc. CuO-H2O (DI) nanofluid, respectively, as compared to H2O (DI) at 40 LPH while at 80 LPH improvement in efficiency of collector of about 7.15% and 8.42% is obtained using 0.01% vol. conc. SiO2-H2O (DI) nanofluid and 0.01% vol. conc. CuO-H2O (DI) nanofluid, respectively, as compared to H2O (DI). Both experimental and CFD temperature results are in good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.