Severe hemorrhage associated with trauma, surgery, and congenital or drug-induced coagulopathies can be life-threatening and requires rapid hemostatic management via topical, intracavitary, or intravenous routes. For injuries that are not easily accessible externally, intravenous hemostatic approaches are needed. The clinical gold standard for this is transfusion of blood products, but due to donor dependence, specialized storage requirements, high risk of contamination, and short shelf life, blood product use faces significant challenges. Consequently, recent research efforts are being focused on designing biosynthetic intravenous hemostats, using intravenous nanoparticles and polymer systems. Here we report on the design and evaluation of thrombin-loaded injury-site-targeted lipid nanoparticles (t-TLNPs) that can specifically localize at an injury site via platelet-mimetic anchorage to the von Willebrand factor (vWF) and collagen and directly release thrombin via diffusion and phospholipase-triggered particle destabilization, which can locally augment fibrin generation from fibrinogen for hemostatic action. We evaluated t-TLNPs in vitro in human blood and plasma, where hemostatic defects were created by platelet depletion and anticoagulation. Spectrophotometric studies of fibrin generation, rotational thromboelastometry (ROTEM)based studies of clot viscoelasticity, and BioFlux-based real-time imaging of fibrin generation under simulated vascular flow conditions confirmed that t-TLNPs can restore fibrin in hemostatic dysfunction settings. Finally, the in vivo feasibility of t-TLNPs was tested by prophylactic administration in a tail-clip model and emergency administration in a liver-laceration model in mice with induced hemostatic defects. Treatment with t-TLNPs was able to significantly reduce bleeding in both models. Our studies demonstrate an intravenous nanomedicine continued...
Non-compressible uncontrolled hemorrhage remains a major cause of mortality from traumatic injuries. Additionally, patients with congenital, disease-associated or drug-induced hemostatic dysfunctions, may often be at risk of excessive bleeding. Therefore, treatments that render rapid hemostasis are clinically significant in potentially saving lives. The clinical gold standard for this is the transfusion of whole blood (WB) or blood components (e.g. controlled ratios of platelets, RBCs, and plasma), as evidenced by several clinical studies (e.g. PROPPR, PROMMTT and PAMPer). However, the availability of such blood products is donor-dependent, their shelf-life is limited due to contamination risks, and, their portability and storage is often challenging. While extensive research efforts are currently being focused on addressing these challenges, e.g. using low titer Group O whole blood, cold-storage and freeze-drying of platelets and plasma, in vitro generation of platelets from iPSCs etc., a parallel research focus has emerged in designing biomaterials-based I.V.-administrable technologies (nanoparticles, polymers etc.) that can provide specific functional attributes of hemostasis while allowing donor-independent manufacturing, scale-up, and on-demand availability. Prominent examples of these are 'synthetic platelet' (SynthoPlate) nanoparticles that recapitulate platelet's binding interactions with von Willebrand Factor (vWF), collagen and active platelet integrin GPIIb-IIIa, flexible platelet-like particles (PLP) that bind fibrin to recapitulate platelet's biomechanical properties, fibrinogen function-mimicking nanoparticles that amplify the aggregation of active platelets, peptide-modified synthetic polymers (e.g. PolySTAT, HAPPI etc.) that render clot stabilization etc. In this framework, we present the design and evaluation of I.V.-administrable unique platelet-inspired nanoparticles that render injury site-targeted, enzyme-responsive direct delivery of thrombin, to site-specifically augment fibrin generation for hemostasis. Our design is inspired by platelets' crucial hemostatic mechanisms of : (i) rapidly accumulating at the injury site to form a plug and (ii) serving as a coagulation amplifier via presenting anionic phospholipids on the activated platelet surface to render tenase and prothrombinase factor assemblies leading to thrombin (FIIa) burst, which can then site-specifically convert fibrinogen to fibrin. Thrombin delivery to augment hemostasis is clinically well-accepted, as exemplified by products like Tisseel where thrombin and fibrinogen are co-delivered by syringe directly at wound site. Researchers have also studied thrombin-loaded topical dressings and topical administration of thrombin-loaded particles on wounds to mitigate bleeding, but these cannot be used intravenously. A recent interesting study has explored encapsulation of thrombin-loaded nanoparticles inside actual platelets with the idea of the particles being released (analogous to granule secretion) upon platelet activation, but this was only demonstrated in vitro because optimizing this complex strategy for consistent in vivo function may be challenging. Our approach circumvents these challenges by: (i) loading consistent amount of thrombin in I.V.-administrable lipid nanoparticles (LNPs), (ii) directly targeting the thrombin-loaded LNPs (TLNPs) to the injury site via specific binding to vWF and collagen, and (iii) releasing the loaded thrombin via particle destabilization by the action of injury site-specific enzyme phospholipase A2 for in situ fibrin production. We evaluated the TLNPs in vitro in human blood and plasma where hemostatic defects were created by platelet depletion and anticoagulant treatment. Spectrophotometric studies of fibrin generation, rotational thromboelastometry (ROTEM) based studies of clot characteristics and BioFlux microfluidics based real-time imaging of fibrin generation under simulated vascular flow conditions, confirmed the ability of TLNPs to restore fibrin generation in hemostatic dysfunction settings. Subsequently, the in vivo feasibility of these TLNPs was tested in a mouse tail-clip bleeding model where a combination of platelet depletion plus anticoagulant treatment was used to render significant hemostatic defect. TLNPs were able to effectively reduce tail-bleeding in mice. Figure 1 Figure 1. Disclosures Sen Gupta: Haima Therapeutics: Other: Co-founder, Patents & Royalties: US 9107845, US 9107963.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.