The G2/M checkpoint is activated on DNA damage by the ATM and ATR kinases that are regulated by post-translational modifications. In this paper, the transcriptional coregulation of ATM and ATR by SMARCAL1 and BRG1, both members of the ATPdependent chromatin remodeling protein family, is described. SMARCAL1 and BRG1 colocalize on the promoters of ATM and ATR; downregulation of SMARCAL1/BRG1 results in transcriptional repression of ATM/ATR and therefore, overriding of the G2/M checkpoint leading to mitotic abnormalities. On doxorubicin-induced DNA damage, SMARCAL1 and BRG1 are upregulated and in turn, upregulate the expression of ATM/ATR. Phosphorylation of ATM/ATR is needed for the transcriptional upregulation of SMARCAL1 and BRG1, and therefore, of ATM and ATR on DNA damage. The regulation of ATM/ATR is rendered non-functional if SMARCAL1 and/or BRG1 are absent or if the two proteins are mutated such that they are unable to hydrolyze ATP, as in for example in Schimke Immuno-Osseous Dysplasia and Coffin-Siris Syndrome. Thus, an intricate transcriptional regulation of DNA damage response genes mediated by SMARCAL1 and BRG1 is present in mammalian cells.
The G2/M checkpoint is activated on DNA damage by the ATM and ATR kinases that are regulated by post-translational modifications. In this paper, the transcriptional coregulation of ATM and ATR by SMARCAL1 and BRG1, both members of the ATPdependent chromatin remodeling protein family, is described. SMARCAL1 and BRG1 colocalize on the promoters of ATM and ATR; downregulation of SMARCAL1/BRG1 results in transcriptional repression of ATM/ATR and therefore, overriding of the G2/M checkpoint leading to mitotic abnormalities. On doxorubicin-induced DNA damage, SMARCAL1 and BRG1 are upregulated and in turn, upregulate the expression of ATM/ATR. Phosphorylation of ATM/ATR is needed for the transcriptional upregulation of SMARCAL1 and BRG1, and therefore, of ATM and ATR on DNA damage. The regulation of ATM/ATR is rendered non-functional if SMARCAL1 and/or BRG1 are absent or if the two proteins are mutated such that they are unable to hydrolyze ATP, as in for example in Schimke Immuno-Osseous Dysplasia and Coffin-Siris Syndrome. Thus, an intricate transcriptional regulation of DNA damage response genes mediated by SMARCAL1 and BRG1 is present in mammalian cells.
Active DNA-dependent ATPase A Domain inhibitor (ADAADi) is the only known inhibitor of ATP-dependent chromatin remodeling proteins that targets the ATPase domain of these proteins. The molecule is synthesized by aminoglycoside phosphotransferase enzyme in the presence of aminoglycosides. ADAADi interacts with ATP-dependent chromatin remodeling proteins through motif Ia present in the conserved helicase domain, and thus, can potentially inhibit all members of this family of proteins. We show that mammalian cells are sensitive to ADAADi but with variable responses in different cell lines. ADAADi can be generated from a wide variety of aminoglycosides; however, cells showed differential response to ADAADi generated from various aminoglycosides. Using HeLa and DU145 cells as model system we have explored the effect of ADAADi on cellular functions. We show that the transcriptional network of a cell type is altered when treated with sub-lethal concentration of ADAADi. Although ADAADi has no known effects on DNA chemical and structural integrity, expression of DNA-damage response genes was altered. The transcripts encoding for the pro-apoptotic proteins were found to be upregulated while the anti-apoptotic genes were found to be downregulated. This was accompanied by increased apoptosis leading us to hypothesize that the ADAADi treatment promotes apoptotic-type of cell death by upregulating the transcription of pro-apoptotic genes. ADAADi also inhibited migration of cells as well as their colony forming ability leading us to conclude that the compound has effective anti-tumor properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.