Staphylococcus aureus is a relevant agent of skin and soft tissue infections (SSTIs) in animals. Fifty-five S. aureus comprising all SSTI-related isolates in companion animals, collected between 1999 and 2018 (Lab 1) or 2017 and 2018 (Lab 2), were characterized regarding susceptibility to antibiotics and heavy metals and carriage of antimicrobial resistance determinants. Clonal lineages were established by PFGE, MLST and agr typing. Over half of the isolates (56.4%, 31/55) were methicillin-resistant S. aureus (MRSA), and 14.5% showed a multidrug resistance (MDR) phenotype. Resistance was most frequently observed for beta-lactams (81.8%, related to blaZ and/or mecA), fluoroquinolones (56.4%) and macrolides/lincosamides (14.5%, related to erm(A) or erm(C)). The distributions of heavy-metal MICs allowed the detection of non-wild-type populations associated with several resistance genes. The collection showed genetic diversity, with prevalence of clonal lineage ST22-agrI (45.5%, 25/55), comprising only MRSA isolates, and several less frequently detected clones, including ST5-agrII (14.6%, 8/55), ST398-agrI (9.1%, 5/55) and ST72-agrI (7.3%, 4/55). This work highlights the high frequency of SSTI-related MRSA strains that reflect the clonal lineages circulating both in companion animals and humans in Portugal, reinforcing the need for a One Health approach when studying staphylococci causing infections in companion animals.
Staphylococcus aureus (S. aureus) is a leading cause of skin and soft-tissue infections (SSTIs) in the community. In this study, we characterized a collection of 34 S. aureus from SSTIs in ambulatory patients in Portugal and analyzed the presence of Panton–Valentine leucocidin (PVL)-encoding genes and antibiotic-resistance profile, which was correlated with genetic determinants, plasmid carriage, and clonal lineage. Nearly half of the isolates (15, 44.1%) were methicillin-resistant Staphylococcus aureus (MRSA) and/or multidrug resistant (MDR). We also detected resistance to penicillin (33/34, 97.1%), fluoroquinolones (17/34, 50.0%), macrolides and lincosamides (15/34, 44.1%), aminoglycosides (6/34, 17.6%), and fusidic acid (2/34, 5.9%), associated with several combinations of resistance determinants (blaZ, erm(A), erm(C), msr(A), mph(C), aacA-aphD, aadD, aph(3′)-IIIa, fusC), or mutations in target genes (fusA, grlA/gyrA). The collection presented a high genetic diversity (Simpson’s index of 0.92) with prevalence of clonal lineages CC5, CC22, and CC8, which included the MRSA and also most MDR isolates (CC5 and CC22). PVL-encoding genes were found in seven isolates (20.6%), three methicillin-susceptible Staphylococcus aureus (MSSA) (ST152-agrI and ST30-agrIII), and four MRSA (ST8-agrI). Plasmid profiling revealed seventeen distinct plasmid profiles. This work highlights the high frequency of antimicrobial resistance and PVL carriage in SSTIs-related S. aureus outside of the hospital environment.
Coagulase-positive staphylococci (CoPS) account for most bacteria-related pyoderma in companion animals. Emergence of methicillin-resistant strains of Staphylococcus pseudintermedius (MRSP), Staphylococcus aureus (MRSA) or Staphylococcus coagulans (MRSC), often with multidrug-resistant (MDR) phenotypes, is a public health concern. The study collection comprised 237 staphylococci (S. pseudintermedius (n = 155), S. aureus (n = 55) and S. coagulans (n = 27)) collected from companion animals, previously characterized regarding resistance patterns and clonal lineages. Biofilm production was detected for 51.0% (79/155), 94.6% (52/55) and 88.9% (24/27) of the S. pseudintermedius, S. aureus and S. coagulans, respectively, and was a frequent trait of the predominant S. pseudintermedius and S. aureus clonal lineages. The production of biofilm varied with NaCl supplementation of the growth media. All S. pseudintermedius and S. aureus strains carried icaADB. Kaplan–Meier survival analysis of Galleria mellonella infected with different CoPS revealed a higher virulence potential of S. aureus when compared with other CoPS. Our study highlights a high frequency of biofilm production by prevalent antimicrobial-resistant clonal lineages of CoPS associated with animal pyoderma, potentially related with a higher virulence potential and persistent or recurrent infections.
Staphylococcus aureus and particularly methicillin-resistant S. aureus (MRSA) infections are currently associated with extremely high morbidity and mortality rates worldwide. The global escalation in the development of antibiotic-resistant human pathogens and S. aureus ability in developing new clones with the capacity to invade community settings, leads to an urgent need to develop accurate and efficient assessments of S. aureus colonization in occupational settings, particularly those with increased risk of human and animal colonization and food contamination. Here we present cross-sectional studies with the aim to assemble crucial information regarding MRSA prevalence in workers from five different Portuguese occupational environments (bakeries, swineries (humans and animals), ambulance crews, veterinary clinics and healthcare facilities). Our data demonstrated high prevalence of S. aureus asymptomatic carriers among bakery workers (40%; 75% MSSA and 25% MRSA), swinery workers (54%; 8% MSSA and 46% MRSA), firefighters (48.5%; 24% MSSA and 21% MRSA) and healthcare workers (Study 1: 42.2%; 18.4% MSSA and 23.7% MRSA, Study 2: 43.3% MRSA). S. aureus prevalence in veterinary staff was 7.1% (MSSA), lower than the results obtained in control groups (33.3% S. aureus; MRSA 4% to 10%). The present study sustains the urge to develop accurate and efficient assessment of S. aureus human and animal colonization, particularly in high risk occupational settings, with proper guidelines and validated procedures in order to avoid potential hazardous health outcomes associated with bioaerosol exposure and associated infectious diseases.
Purpose DNA methylation is involved in Diabetic Retinopathy progression showing a metabolic memory mechanism. However, the association of DNA methyltransferase with diabetic macular edema is still unknown. We aimed to describe the differences in DNA methyltransferase gene expression in patients with different diabetic macular edema responses. Methods A total of 27 diabetic patients, aged 59–90 years, were prospectively enrolled in this cross-sectional study. The participants were classified into control group (CG, n = 11), diabetic macular edema responders (rDME, n = 9) and non-responder diabetic macular edema (nrDME, n = 7) after anti-vascular endothelial growth factor (anti-VEGF) treatment. Only cases with a complete ophthalmological examination, digital 133° color fundus, and SD-OCT assessments were used. After RNA extraction and first-strand cDNA synthesis, quantitative real-time PCR was performed with specific primers on the CFX Connect™ Real-Time PCR Detection System to assess differential transcriptional expression patterns. Results The DNMT1 gene showed a positive correlation (r = 0.617; p = 0.043) with Best Corrected Visual Acuity (BCVA) in CG, a positive correlation (r = 0.917; p = 0.010) with HbA1c in nrDME and a negative correlation (r = −0.659; p = 0.049) with GCL-IPL thickness in rDME. DNMT3A gene showed a positive correlation (r = −0.890; p = 0.001) with Sub-foveal Choroidal thickness in rDME whereas DNMT3b gene showed a negative correlation (r = −0.815; p = 0.007) with HbA1c and RNFL (r = −0.664; p = 0.026) in CG. Conclusions Patients with similar metabolic profile risk factors showed associated DNA methyltransferase transcriptional expression patterns differences fitting with the anti-VEGF diabetic macular edema response. Further studies are needed to clarify if these results (1) reflect disease evolution, (2) translate the therapeutic impact, (3) or can help to predict the therapeutic resistance profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.