Objectives Little is currently known about vaccine effectiveness (VE) for either two doses of Oxford-AstraZeneca (ChAdOx1) viral vector vaccine or CoronaVac inactivated viral vaccine followed by a third dose of mRNA vaccine (Pfizer/BioNTech) among healthcare workers (HCWs). Methods We conducted a retrospective cohort study among HCWs (aged ≥18 years) working in a private healthcare system in Brazil from January to December 2021. VE was defined as 1-IRR (incidence rate ratio), with IRR determined using Poisson models with the occurrence of laboratory-confirmed COVID-19 infection as the outcome, adjusting for age, sex, and job type. We compared those receiving viral vector or inactivated viral primary series (two doses) to those who received an mRNA booster. Results A total of 11,427 HCWs met the inclusion criteria. COVID-19 was confirmed in 31.5% of HCWs receiving two doses of CoronaVac vaccine vs. 0.9% of HCWs receiving two doses of CoronaVac vaccine with mRNA booster (p < 0.001), and 9.8% of HCWs receiving two doses of ChAdOx1 vaccine vs. 1% among HCWs receiving two doses of ChAdOx1 vaccine with mRNA booster (p < 0.001). In the adjusted analyses, the estimated VE was 92.0% for two CoronaVac vaccines plus mRNA booster, and 60.2% for two ChAdOx1 vaccines plus mRNA booster, when compared to those with no mRNA booster. Of 246 samples screened for mutations, 191 (77.6%) were Delta variants. Conclusions While two doses of ChAdOx1 or CoronaVac vaccines prevent COVID-19, the addition of a Pfizer/BioNTech booster provided significantly more protection.
Hepatitis C virus (HCV) infection affects approximately 3 % of the world population. HCV targets hepatic tissue, and most infected patients develop a chronic infection. Currently, studies have demonstrated an association between HCV-RNA replication and miR-122, the most abundant microRNA in the liver. Our aim was to evaluate liver and serum expression of miR-122 in patients infected with HCV genotypes 1 and 3, and to identify possible associations between miR-122 expression and lipid profiles, HCV viral load, apolipoproteins and liver enzymes. MicroRNAs were isolated from blood and liver tissue, and miR-122 expression was quantified by real-time PCR. HCV viral load was quantified by real-time PCR and HCV genotype, and serum biomarkers were obtained from medical report. The levels of miR-122 were higher in liver than those in blood from individuals infected with HCV genotypes 1 and 3 (p < 0.0001). The tissue levels of miR-122 were higher in subjects infected with HCV genotype 3 (6.22-fold, p < 0.001). A positive correlation was observed between the blood and hepatic levels of miR-122 in patients infected with HCV genotype 1 (r = 0.302, p = 0.026); in these patients, an inverse correlation was observed between serum apolipoprotein A-II (ApoA-II) levels and the blood (r = -0.330; p = 0.014) and hepatic (r = -0.311; p = 0.020) levels of miR-122. In patients infected with HCV genotype 3, there was a positive correlation between the hepatic miR-122 and the high-density lipoprotein-HDL (r = 0.412, p = 0.036) and insulin (r = 0.478, p = 0.044). Lipid metabolism proteins and miR-122 expression levels have different relations in HCV-3- and HCV-1-infected patients.
OBJECTIVE: Group B Streptococcus (GBS) serotypes (Ia, Ib and II to IX) are classified based on variations in their capsular polysaccharide; their prevalence differs between different geographic areas. We examined the prevalence of all GBS serotypes in rectal and vaginal swab samples obtained from 363 pregnant women followed at a Brazilian referral center (Hospital da Mulher Professor Doutor José Aristodemo Pinotti); bacterial susceptibility to antibiotics was further determined. METHOD: Prevalence of positive GBS was evaluated by latex agglutination and by multiplex PCR analysis; bacterial susceptibility to antibiotics, such as clindamycin, erythromycin, levofloxacin, linezolid, penicillin and tetracycline was determined by the disk diffusion method. RESULTS: (a) standard GBS culture and the multiplex PCR analysis tested positive for 83 swabs, collected from 72 women (prevalence of GBS colonization: 72/363; 20%); the most prevalent Serotype was Ia (n=43/83; 52%), followed by serotype V (n=14/83; 17%); according to anatomical origin, serotype Ia accounted for 27/59 (46%) and 16/24 (67%) of the vaginal and rectal samples, respectively; PCR also identified serotypes Ib, II, III and VI. Serotype VI is rarely described and had not been previously reported in Brazil or in Latin America. (b) The latex agglutination test only identified 44 positive samples, all of which were serotyped: 34 of these samples (77%) had serotypes matching those identified by multiplex PCR. (c) Only one sample (serotype Ia) showed resistance to erythromycin and clindamycin. CONCLUSION: Regional studies on GBS serotypes prevalence are essential to guide immunoprophylactic interventions (vaccines) and the implementation of adequate antibiotic prophylaxis or treatment. In this study, the incidence of the serotype VI, a new and rare serotype of GBS was described for the first time in a Brazilian population.
Objectives: We aimed to investigate real-world vaccine effectiveness (VE) for Oxford-AstraZeneca (ChAdOx1) and CoronaVac against laboratory-confirmed COVID-19 infection among healthcare workers (HCWs). Methods: We conducted a retrospective cohort study among HCWs (aged ≥18 years) working in a private healthcare system in Brazil between January 1, 2021 and August 3, 2021. To assess VE, we calculated VE=1-RR (rate ratio), with RR determined by adjusting Poisson models with the occurrence of COVID-19 infection as the outcome, and the vaccination status as the main exploratory variable. We used the logarithmic link function and simple models adjusting for sex, age and job types. Results: 13,813 HCWs met the inclusion criteria for this analysis. 6,385 (46.2%) received the CoronaVacvaccine, 5,916 (42.8%) received the ChAdOx1 vaccine, and 1,512 (11.0%) were not vaccinated. Overall, COVID-19 infection cases happened in 6% of unvaccinated HCWs, 3% of HCWs receiving two doses of CoronaVacvaccine, and 0.7% of HCWs receiving two doses of ChAdOx1 vaccine (p-value< 0.001). In the adjusted analyses, the estimated VE was 51.3% for CoronaVac, and 88.1% for ChAdOx1 vaccine. Both vaccines reduced the number of hospitalizations, the length of hospital stay, and the need of mechanical ventilation. Nineteen SARSCoV-2 samples from nineteen HCWs were screened for mutations of interest. Eighteen out of nineteen of those samples were Gamma SARS-CoV-2 variant. Conclusions: While both COVID-19 vaccines (viral vector and inactivated virus) can significantly prevent COVID-19 infection among HCWs, CoronaVac was much less effective. The COVID-19 vaccines were also effective even against a dominant Gamma variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.