Activating mutations in the BRAF-MAPK pathway have been reported in histiocytoses, hematological inflammatory neoplasms characterized by multi-organ dissemination of pro-inflammatory myeloid cells. Here, we generate a humanized mouse model of transplantation of human hematopoietic stem and progenitor cells (HSPCs) expressing the activated form of BRAF (BRAFV600E). All mice transplanted with BRAFV600E-expressing HSPCs succumb to bone marrow failure, displaying myeloid-restricted hematopoiesis and multi-organ dissemination of aberrant mononuclear phagocytes. At the basis of this aggressive phenotype, we uncover the engagement of a senescence program, characterized by DNA damage response activation and a senescence-associated secretory phenotype, which affects also non-mutated bystander cells. Mechanistically, we identify TNFα as a key determinant of paracrine senescence and myeloid-restricted hematopoiesis and show that its inhibition dampens inflammation, delays disease onset and rescues hematopoietic defects in bystander cells. Our work establishes that senescence in the human hematopoietic system links oncogene-activation to the systemic inflammation observed in histiocytic neoplasms.
Telomeres and telomerase prevent the continuous erosion of chromosome‐ends caused by lifelong cell division. Shortened telomeres are associated with age‐related pathologies. While short telomere length is positively correlated with increased lethality at the individual level, in comparisons across species short telomeres are associated with long (and not short) lifespans. Here, we tested this contradiction between individual and evolutionary patterns in telomere length using African annual killifish. We analysed lifespan and telomere length in a set of captive strains derived from well‐defined wild populations of Nothobranchius furzeri and its sister species, N. kadleci, from sites along a strong gradient of aridity which ultimately determines maximum natural lifespan. Overall, males were shorter‐lived than females, and also had shorter telomeres. Male lifespan (measured in controlled laboratory conditions) was positively associated with the amount of annual rainfall in the site of strain origin. However, fish from wetter climates had shorter telomeres. In addition, individual fish which grew largest over the juvenile period possessed shorter telomeres at the onset of adulthood. This demonstrates that individual condition and environmentally‐driven selection indeed modulate the relationship between telomere length and lifespan in opposite directions, validating the existence of inverse trends within a single taxon. Intraindividual heterogeneity of telomere length (capable to detect very short telomeres) was not associated with mean telomere length, suggesting that the shortest telomeres are controlled by regulatory pathways other than those that determine mean telomere length. The substantial variation in telomere length between strains from different environments identifies killifish as a powerful system in understanding the adaptive value of telomere length.
Immune escape represents a major driver of acute myeloid leukemia (AML) reemergence after allogeneic hematopoietic cell transplantation (allo-HCT), with up to 40% of relapses prompted by non-genomic loss of HLA class II expression in leukemia cells. By integrative analysis of gene expression, DNA methylation, and chromatin accessibility in paired diagnosis/relapse primary samples and in the respective patient-derived xenografts (PDXs), we identify the polycomb repressive complex 2 (PRC2) as key epigenetic driver of this immune escape modality. We report that loss of expression of HLA class II molecules is accompanied by a PRC2-dependent reduction in chromatin accessibility. Pharmacological inhibition of PRC2 subunits rescues HLA class II expression in AML relapses in vitro and in vivo, with consequent recovery of leukemia recognition by CD4+ T cells. Our results uncover a novel link between epigenetics and leukemia immune escape, which may rapidly translate into innovative strategies to cure or prevent AML post-transplantation relapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.