We herein report a simultaneous frequency stabilization of two 780-nm external cavity diode lasers using a precision wavelength meter (WLM). The laser lock performance is characterized by the Allan deviation measurement in which we find σy=10−12 at an averaging time of 1000 s. We also obtain spectral profiles through a heterodyne spectroscopy, identifying the contribution of white and flicker noises to the laser linewidth. The frequency drift of the WLM is measured to be about 2.0(4) MHz over 36 h. Utilizing the two lasers as a cooling and repumping field, we demonstrate a magneto-optical trap of 87Rb atoms near a high-finesse optical cavity. Our laser stabilization technique operates at broad wavelength range without a radio frequency element.
We describe a complete development process of a segmented-blade linear ion trap. An alumina substrate is characterized with an x-ray diffraction and loss-tangent measurement. The blade is laser-micromachined and polished, followed by sputtering and gold electroplating. Surface roughness is examined at each step of the fabrication via both electron and optical microscopies. On the gold-plated facet, we obtain a height deviation of tens of nanometers in the vicinity of the ion position. Trapping of laser-cooled 174Yb+ ions is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.