Cable-stayed bridges are infrastructure facilities of a highly public nature; therefore, it is essential to ensure operational safety and prompt response in the event of a collapse or damage, which are caused by natural and social disasters. Among social disasters, blast accidents can occur in cable-stayed bridges as a result of explosions produced by vehicle collisions or terrorist attacks; this can lead to the degradation in their structural performances and subsequent collapse. In this research, a procedure to assess structural blast-resistance performance is suggested based on a numerical analysis approach, and the feasibility of the procedure is demonstrated by performing an example assessment. The suggested procedure includes (1) selection of major structural components that severely affect the global structural behavior, (2) set-up blast hazard scenarios consisting of various blast levels and locations, and (3) assessment of the components using numerical blast simulation. By performing an example assessment, the critical blast level for each component could be determined and the blast location that affects the considering components the most severely could be found as well. The scenario-based assessment process employed in this study is expected to facilitate the evaluation of bridge structures under blasts in both existing bridges and future designs.
Cable-stayed bridges are infrastructure facilities of a highly public nature; therefore, it is essential to ensure operational safety and prompt response in the event of a collapse or damage caused by natural and social disasters. Among social disasters, impact accidents can occur in bridges when a vehicle collides with a pier or when crashes occur due to aircraft defects. In the case of offshore bridges, ship collisions will occur at the bottom of the pylon. In this research, a procedure to evaluate the structural behavior of a cable-stayed bridge for aircraft impact is suggested based on a numerical analysis approach, and the feasibility of the procedure is demonstrated by performing an example assessment. The suggested procedure includes 1) setting up suitable aircraft impact hazard scenarios, 2) structural modeling considering the complex behavior mechanisms of cable-stayed bridges, and 3) structural behavior evaluation of cable-stayed bridges using numerical impact simulation. It was observed that the scenario set in this study did not significantly affect the target bridge. However, if impact analysis is performed through various scenarios in the future, the load position and critical load level to cause serious damage to the bridge could be identified. The scenario-based assessment process employed in this study is expected to facilitate the evaluation of bridge structures under aircraft impact in both existing bridges and future designs.
<p>In this study, a firewall was proposed as such countermeasure against the risk of vehicle fires on a suspension bridge, and the effect of the firewall was investigated by CFD analyses considering the proposed firewall. CFD analyses results, it is observed that temperatures exceeding the regulation of PTI standards (300℃) occur in the tanker fire scenario. Thus, countermeasures are required in this case. Therefore, analyses of the cases with firewall were performed, and it was confirmed that installing a firewall reduces the maximum temperature of the cable. Finally, the optimal dimensions of the firewall were suggested through a parametric study of a series of CFD analyses. In the future, if additional CFD analyses for various scenarios and assessment of wind stability considering the firewall installation are performed, it is expected that the cable members of the actual cable- supported bridges can effectively be protected from vehicle fire.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.