Summary The gut microbiome is widely studied by fecal sampling, but the extent to which stool reflects the commensal composition at intestinal sites is poorly understood. We investigated this relationship in rhesus macaques by 16S sequencing feces and paired lumenal and mucosal samples from 10 sites distal to the jejunum. Stool composition correlated highly with the colonic lumen and mucosa, and moderately with the distal small intestine. The mucosal microbiota varied most based on location and was enriched in oxygen-tolerant taxa (e.g. Helicobacter, Treponema), while the lumenal microbiota showed inter-individual variation and obligate anaerobe enrichment (e.g. Firmicutes). This mucosal and lumenal community variability corresponded to functional differences, such as nutrient availability. Additionally, Helicobacter, Faecalibacterium, and Lactobacillus levels in stool were highly predictive of their abundance at most other gut sites. These results quantify the composition and biogeographic relationships between gut microbial communities in macaques and support fecal sampling for translational studies.
BackgroundDuring intra-erythrocytic development, late asexually replicating Plasmodium falciparum parasites sequester from peripheral circulation. This facilitates chronic infection and is linked to severe disease and organ-specific pathology including cerebral and placental malaria. Immature gametocytes - sexual stage precursor cells - likewise disappear from circulation. Recent work has demonstrated that these sexual stage parasites are located in the hematopoietic system of the bone marrow before mature gametocytes are released into the bloodstream to facilitate mosquito transmission. However, as sequestration occurs only in vivo and not during in vitro culture, the mechanisms by which it is regulated and enacted (particularly by the gametocyte stage) remain poorly understood.ResultsWe generated the most comprehensive P. falciparum functional gene network to date by integrating global transcriptional data from a large set of asexual and sexual in vitro samples, patient-derived in vivo samples, and a new set of in vitro samples profiling sexual commitment. We defined more than 250 functional modules (clusters) of genes that are co-expressed primarily during the intra-erythrocytic parasite cycle, including 35 during sexual commitment and gametocyte development. Comparing the in vivo and in vitro datasets allowed us, for the first time, to map the time point of asexual parasite sequestration in patients to 22 hours post-invasion, confirming previous in vitro observations on the dynamics of host cell modification and cytoadherence. Moreover, we were able to define the properties of gametocyte sequestration, demonstrating the presence of two circulating gametocyte populations: gametocyte rings between 0 and approximately 30 hours post-invasion and mature gametocytes after around 7 days post-invasion.ConclusionsThis study provides a bioinformatics resource for the functional elucidation of parasite life cycle dynamics and specifically demonstrates the presence of the gametocyte ring stages in circulation, adding significantly to our understanding of the dynamics of gametocyte sequestration in vivo.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-015-0133-7) contains supplementary material, which is available to authorized users.
In the current era of malaria eradication, reducing transmission is critical. Assessment of transmissibility requires tools that can accurately identify the various developmental stages of the malaria parasite, particularly those required for transmission (sexual stages). Here, we present a method for estimating relative amounts of Plasmodium falciparum asexual and sexual stages from gene expression measurements. These are modeled using constrained linear regression to characterize stage-specific expression profiles within mixed-stage populations. The resulting profiles were analyzed functionally by gene set enrichment analysis (GSEA), confirming differentially active pathways such as increased mitochondrial activity and lipid metabolism during sexual development. We validated model predictions both from microarrays and from quantitative RT-PCR (qRT-PCR) measurements, based on the expression of a small set of key transcriptional markers. This sufficient marker set was identified by backward selection from the whole genome as available from expression arrays, targeting one sentinel marker per stage. The model as learned can be applied to any new microarray or qRT-PCR transcriptional measurement. We illustrate its use in vitro in inferring changes in stage distribution following stress and drug treatment and in vivo in identifying immature and mature sexual stage carriers within patient cohorts. We believe this approach will be a valuable resource for staging lab and field samples alike and will have wide applicability in epidemiological studies of malaria transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.