Further enhancement of maize (Zea mays L.) N‐use efficiency (NUE) will benefit from a thorough understanding of how genetic improvement has shaped N use parameters. Since selection for grain yield has occurred at high N fertilizer rates, our hypothesis was that modern hybrids would have a greater response to supplemental N than hybrids from earlier eras. In 2009 and 2010, 21 single‐cross maize hybrids released between 1967 and 2006 were characterized for grain yield and N use traits. While the ability to acquire mineralized soil N did not change over era, the utilization increased with decade of introduction (0.24 kg kg–1 of plant N [kgplantN–1] yr–1; R2 = 0.37). Increases of grain yield at high N (86 kg ha–1 yr–1; R2 = 0.68) over era were accompanied by increases at low N of 56 kg ha–1 yr–1 (R2 = 0.69). Grain yield improvements at all levels of N were associated with decreased barrenness and increased kernel number expressed on a per‐plant and per‐area basis. Fertilizer N response, NUE, increased at a rate of 0.16 kg kg–1 of fertilizer N (kgN–1) yr–1 (R2 = 0.40). Increased NUE was positively correlated with improved N‐uptake efficiency (r = 0.76, P ≤ 0.001), due to the greater postflowering N uptake of more recent hybrids. The response of grain yield to fertilizer N in current hybrids is more dependent on uptake of fertilizer N than the efficiency of fertilizer N utilization, and approximately two‐thirds of genetic gain for grain yield at high N can be explained by improvements in grain yield at low N.
Genetically engineered crops were first commercialized in 1994 and since then have been rapidly adopted, enabling growers to more effectively manage pests and increase crop productivity while ensuring food, feed, and environmental safety. The development of these crops is complex and based on rigorous science that must be well coordinated to create a plant with desired beneficial phenotypes. This article describes the general process by which a genetically engineered crop is developed from an initial concept to a commercialized product.
SummaryHere, we show that differences between genetically modified (GM) and non-GM comparators cannot be attributed unequivocally to the GM trait, but arise because of minor genomic differences in near-isogenic lines. Specifically, this study contrasted the effect of three GM traits (drought tolerance, MON 87460; herbicide resistance, NK603; insect protection, MON 89034) on maize grain composition relative to the effects of residual genetic variation from backcrossing. Important features of the study included (i) marker-assisted backcrossing to generate genetically similar inbred variants for each GM line, (ii) high-resolution genotyping to evaluate the genetic similarity of GM lines to the corresponding recurrent parents and (iii) introgression of the different GM traits separately into a wide range of genetically distinct conventional inbred lines. The F1 hybrids of all lines were grown concurrently at three replicated field sites in the United States during the 2012 growing season, and harvested grain was subjected to compositional analysis. Proximates (protein, starch and oil), amino acids, fatty acids, tocopherols and minerals were measured. The number of statistically significant differences (a = 0.05), as well as magnitudes of difference, in mean levels of these components between corresponding GM variants was essentially identical to that between GM and non-GM controls. The largest sources of compositional variation were the genetic background of the different conventional inbred lines (males and females) used to generate the maize hybrids and location. The lack of any compositional effect attributable to GM suggests the development of modern agricultural biotechnology has been accompanied by a lack of any safety or nutritional concerns.
The C4 crop maize (Zea mays) is the most widely grown cereal crop worldwide and is an essential feedstock for food and bioenergy. Improving maize yield is important to achieve food security and agricultural sustainability in the 21st century. One potential means to improve crop productivity is to enhance photosynthesis. ictB, a membrane protein that is highly conserved across cyanobacteria, has been shown to improve photosynthesis, and often biomass, when introduced into diverse C3 plant species. Here, ictB from Synechococcus sp. strain PCC 7942 was inserted into maize using Agrobacterium-mediated transformation. In three controlled-environment experiments, ictB insertion increased leaf starch and sucrose content by up to 25% relative to controls. Experimental field trials in four growing seasons, spanning the Midwestern United States (Summers 2018 & 2019) and Argentina (Winter 2018 & 2019), showed an average of 3.49% grain yield improvement, by as much as 5.4% in a given season and up to 9.4% at certain trial locations. A subset of field trial locations was used to test for modification of ear traits and ФPSII, a proxy for photosynthesis. Results suggested that yield gain in transgenics could be associated with increased ФPSII, and the production of longer, thinner ears with more kernels. ictB localized primarily to the microsome fraction of leaf bundle-sheath cells, but not to chloroplasts. Extramembrane domains of ictB interacted in vitro with proteins involved in photosynthesis and carbohydrate metabolism. To our knowledge, this is the first published evidence of ictB insertion into a species using C4 photosynthesis and the largest-scale demonstration of grain yield enhancement from ictB insertion in planta. Results show that ictB is a valuable yield gene in the economically important crop maize, and are an important proof of concept that transgenic manipulation of photosynthesis can be used to create economically viable crop improvement traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.