Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.
Microalgae are known to produce a plethora of compounds derived from the primary and secondary metabolism. Different studies have shown that these compounds may have allelopathic, antimicrobial, and antipredator activities. In addition, in vitro and in vivo screenings have shown that several compounds have interesting bioactivities (such as antioxidant, anti-inflammatory, anticancer, and antimicrobial) for the possible prevention and treatment of human pathologies. Additionally, the enzymatic pathways responsible for the synthesis of these compounds, and the targets and mechanisms of their action have also been investigated for a few species. However, further research is necessary for their full exploitation and possible pharmaceutical and other industrial applications. Here, we review the current knowledge on the chemical characteristics, biological activities, mechanism of action, and the enzymes involved in the synthesis of microalgal metabolites with potential benefits for human health.
Due to the unique biodiversity and the physical-chemical properties of their environment, marine microorganisms have evolved defense and signaling compounds that often have no equivalent in terrestrial habitats. The aim of this study was to screen extracts of the dinoflagellate Amphidinium carterae for possible bioactivities (i.e., anticancer, anti-inflammatory, anti-diabetes, antibacterial and antifungal properties) and identify bioactive compounds. Anticancer activity was evaluated on human lung adenocarcinoma (A549), human skin melanoma (A2058), human hepatocellular carcinoma (HepG2), human breast adenocarcinoma (MCF7) and human pancreas carcinoma (MiaPaca-2) cell lines. Antimicrobial activities were evaluated against Gram-positive bacteria (Staphylococcus aureus MRSA and MSSA), Gram-negative bacteria (i.e., Escherichia coli and Klebsiella pneumoniae), Mycobacterium tuberculosis and the fungus Aspergillus fumigatus. The results indicated moderate biological activities against all the cancer cells lines and microorganisms tested. Bioassay-guided fractionation assisted by HRMS analysis allowed the detection of one new and two known amphidinols that are potentially responsible for the antifungal and cytotoxic activities observed. Further isolation, purification and structural elucidation led to a new amphidinol, named amphidinol 22. The planar structure of the new compound was determined by analysis of its HRMS and 1D and 2D NMR spectra. Its biological activity was evaluated, and it displayed both anticancer and antifungal activities.
Mesopelagic organisms form huge biomass aggregations, supporting important pelagic trophic webs and several top predators. Although some studies on the occurrence, biology and ecology of these organisms are available, to date there are no investigations on their potential use for anticancer and antimicrobial biotechnological applications. The aim of this study was to screen extracts of seven mesopelagic species for possible anticancer (Lung cell line A549, skin cell line A2058, liver cell line HepG2, breast cell line MCF7 and pancreas cell line MiaPaca-2) and antibacterial (Gram-negative bacteria Escherichia coli and Klebsiella pneumoniae, the Gram-positive bacteria methicillin resistant/ sensitive Staphylococcus aureus, and Mycobacterium tuberculosis) activities. Results showed that only two species were active, the lanternfish Myctophum punctatum and the Mediterranean krill Meganyctiphanes norvegica. In particular, M. punctatum showed strong activity against the A549 and MCF7 cells, while M. norvegica was more active against HepG2 cells. Regarding antibacterial assays, both species were active against methicillin resistant S. aureus. Fractionation and LC/MS dereplication of the fractions showed that the main compounds found in extracts of both species were EPA, DHA and ETA. For some of the detected compounds anticancer and/or antibacterial activity are already known, but this is the first time that such activities have been found for mesopelagic species. The mesopelagic zone, from "meso" meaning intermediate, represents a water layer of the ocean below the epipelagic and above the bathypelagic zones, at depths between 200 and 1000 m, that is characterized by increased hydrostatic pressure, diminished light, high inorganic nutrient concentrations and episodic food supply 1. A large number of marine organisms live in the mesopelagic zone, from bacteria to zooplankton and nekton, including species adapted to peculiar conditions, such as the twilight environment, inhabited by a myriad of bioluminescent and unique organisms 2-4. These organisms often form huge biomass aggregations, supporting important pelagic trophic webs and several top predators 5-8. In particular, due to their high density and wide diffusion, mesopelagic fish can be considered the most abundant vertebrates on earth 9. Studies on mesopelagic micronekton have been mainly focused on their distribution, biology and ecology as well as bioluminescent properties but studies related to their potential biotechnological applications are very rare. The reason is mainly due to high costs for their sampling, often requiring the planning of research cruises, the scarce scientific information on most species, and the very scarce available information on their genomes and transcriptomes. Few mesopelagic species are accidentally caught by fishing gear. However, in the Straits of Messina (central Mediterranean Sea), there is a recurrent phenomenon of stranding of mesopelagic organisms due to several factors. Tidal currents, lunar phases, winds and seasons influen...
We have developed and rationalized a biomimetic transformation mimicking halimane synthases based on a Lewis acid-catalyzed cascade of cyclizations and rearrangements of epoxypolyprenes. Two rings, three stereogenic centers, and a new double bond were generated in a single chemical operation. Based on this cascade transformation, we achieved a unified strategy toward the stereoselective total syntheses of halimene-type terpenoids and analogues as a proof-of-concept study. This method has been applied to the rapid synthesis of diterpene isotuberculosinol, a virulence factor of Mycobacterium tuberculosis as a representative example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.