Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols 1 to generate, to our knowledge, the first reference-quality genomes of six bat species (Rhinolophus ferrumequinum, Rousettus aegyptiacus, Phyllostomus discolor, Myotis myotis, Pipistrellus kuhlii and Molossus molossus). We integrated gene projections from our 'Tool to infer Orthologs from Genome Alignments' (TOGA) software with de novo and homology gene predictions as well as short-and long-read transcriptomics to generate highly complete gene annotations. To resolve the phylogenetic position of bats within Laurasiatheria, we applied several phylogenetic methods to comprehensive sets of orthologous protein-coding and noncoding regions of the genome, and identified a basal origin for bats within Scrotifera. Our genome-wide screens revealed positive selection on hearing-related genes in the ancestral branch of bats, which is indicative of laryngeal echolocation being an ancestral trait in this clade. We found selection and loss of immunity-related genes (including pro-inflammatory NF-κB regulators) and expansions of anti-viral APOBEC3 genes, which highlights molecular mechanisms that may contribute to the exceptional immunity of bats. Genomic integrations of diverse viruses provide a genomic record of historical tolerance to viral infection in bats. Finally, we found and experimentally validated bat-specific variation in microRNAs, which may regulate bat-specific gene-expression programs. Our reference-quality bat genomes provide the resources required to uncover and validate the genomic basis of adaptations of bats, and stimulate new avenues of research that are directly relevant to human health and disease 1. With more than 1,400 species identified to date 2 , bats (Chiroptera) account for about 20% of all extant mammal species. Bats are found around the world and successfully occupy diverse ecological niches 1. Their global success is attributed to an extraordinary suite of adaptations 1 including powered flight, laryngeal echolocation, vocal learning, exceptional longevity and a unique immune system that probably enables bats to better tolerate viruses that are lethal to other mammals (such as severe acute respiratory syndrome-related coronavirus, Middle East respiratory syndrome-related coronavirus and Ebola virus) 3. Bats therefore represent important model systems for the study of
Effective gene silencing by the RNA interference (RNAi) pathway requires a comprehensive understanding of the elements that influence small interfering RNA (siRNA) functionality and specificity. These include (i) sequence space restrictions that define the boundaries of siRNA targeting, (ii) structural and sequence features required for efficient siRNA performance, (iii) mechanisms that underlie nonspecific gene modulation and (iv) additional features specific to the intended use (i.e., inclusion of native sugar or base chemical modifications for increased stability or specificity, vector design, etc.). Attention to each of these factors enhances siRNA performance and heightens overall confidence in the output of RNAi-mediated functional genomic studies. Here, we provide a detailed protocol explaining the methodologies used for manual and web-based design of siRNAs.
Retinoids 1-5 have been identified as potent RXR agonists for evaluation in the treatment of non-insulin-dependent (type II) diabetes mellitus (NIDDM). Highly convergent syntheses of 1-5 have been developed. The core tetrahydronaphthalene 7, employed in the synthesis of 1 and 2, was prepared in 98% yield using an AlCl(3)-catalyzed (0.03 equiv) Friedel-Crafts alkylation of toluene with 2,5-dichloro-2,5-dimethylhexane 6. A nitromethane-mediated Fridel-Crafts acylation of 7 with chloromethylnicotinate 9 was developed to prepare ketone 10 in 68% yield. Chelate-controlled addition of MeMgCl to 10 followed by dehydration afforded olefin 11 in 65% yield. Cyclopropanation of 11 with trimethylsulfoxonium ylide, followed by saponification, completed a five-step synthesis of 1 in 33% yield. FeCl(3)-catalyzed (0.05 equiv) Friedel-Crafts acylation of 7 with chloromethylterephthalate 14 afforded ketone 15 in 81% yield. Saponification of 15 and reaction with 50% aqueous NH(2)OH in AcOH afforded a 9:1 mixture of cis and trans oximes, from which the desired cis-oxime 2 was isolated in 43% yield. The core bromo-dihydronaphthalene 29 required for the synthesis of 3-5 was prepared by a Shapiro reaction. Transmetalation of 29 and reaction with Weinreb amides 30b or 36 afforded ketones 32 and 37, which were converted into 3-5 using chemistry comparable to the tetrahydronaphthylene series. Suzuki coupling of boronic acids 41 and 42 with vinyl triflate 43 provided an alternative approach to the synthesis of this class of compounds.
RNAi screening using pooled shRNA libraries is a valuable tool for identifying genetic regulators of biological processes. However, for a successful pooled shRNA screen, it is imperative to thoroughly optimize experimental conditions to obtain reproducible data. Here we performed viability screens with a library of ∼10 000 shRNAs at two different fold representations (100- and 500-fold at transduction) and report the reproducibility of shRNA abundance changes between screening replicates determined by microarray and next generation sequencing analyses. We show that the technical reproducibility between PCR replicates from a pooled screen can be drastically improved by ensuring that PCR amplification steps are kept within the exponential phase and by using an amount of genomic DNA input in the reaction that maintains the average template copies per shRNA used during library transduction. Using these optimized PCR conditions, we then show that higher reproducibility of biological replicates is obtained by both microarray and next generation sequencing when screening with higher average shRNA fold representation. shRNAs that change abundance reproducibly in biological replicates (primary hits) are identified from screens performed with both 100- and 500-fold shRNA representation, however a higher percentage of primary hit overlap between screening replicates is obtained from 500-fold shRNA representation screens. While strong hits with larger changes in relative abundance were generally identified in both screens, hits with smaller changes were identified only in the screens performed with the higher shRNA fold representation at transduction.
Over two-thirds of melanomas have activating mutations in B-Raf, leading to constitutive activation of the B-Raf/MKK/ERK signaling pathway. The most prevalent mutation, B-RafV600E, promotes cancer cell behavior through mechanisms that are still incompletely defined. Here, we used a sensitive microarray profiling platform to compare microRNA (miRNA) expression levels between primary melanocytes and B-RafV600E-positive melanoma cell lines, and between melanoma cells treated in the presence and absence of an MKK1/2 inhibitor. We identified a network of >20 miRNAs deregulated by B-Raf/MKK/ERK in melanoma cells, the majority of which modulate the expression of key cancer regulatory genes and functions. Importantly, miRNAs within the network converge on protein regulation and cancer phenotypes, suggesting that these miRNAs might function combinatorially. We show that miRNAs augment effects on protein repression and cell invasion when co-expressed, and gene-specific latency and interference effects between miRNAs were also observed. Thus, B-Raf/MKK/ERK controls key aspects of cancer cell behavior and gene expression by modulating a network of miRNAs with cross-regulatory functions. The findings highlight the potential for complex interactions between coordinately regulated miRNAs within a network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.