Western Uganda is a key region for understanding the development of the western branch of the East African rift system and its interaction with pre-existing cratonic lithosphere. It is also the site of the topographically anomalous Rwenzori Mountains, which attain altitudes of [5000 m within the rift. New structural and geochronological data indicate that western Uganda south and east of the Rwenzori Mountains consists of a WSW to ENE trending fold and thrust belt emplaced by thickskinned tectonics that thrust several slices of Proterozoic and Archaean units onto the craton from the south. The presence of Archaean units within the thrust stack is supported by new Laser-ICP-MS U-Pb age determinations (2637-2584 Ma) on zircons from the Rwenzori foothills. Repetition of the Paleoproterozoic units is confirmed by mapping the internal stratigraphy where a basal quartzite can be used as marker layer, and discrete thrust units show distinct metamorphic grades. The thrust belt is partially unconformably covered by a Neoproterozoic nappe correlated with the Kibaran orogenic belt. Even though conglomerates mark the bottom of the Kibaran unit, intensive brittle fault zones and pseudotachylites disprove an autochthonous position. The composition of volcanics in the Toro-Ankole field of western Uganda can be explained by the persistence of a cratonic lithosphere root beneath the northwardly thrusted Archaean and Palaeoproterozoic rocks of westernmost Uganda. Volcanic geochemistry indicates thinning of the lithosphere from [140 km beneath Toro-Ankole to ca. 80 km beneath the Virunga volcanic field about 150 km to the south. We conclude that the western branch of the East African rift system was initiated in an area of thinner lithosphere with Palaeoproterozoic cover in the Virunga area and has propagated northwards where it now abuts against thick cratonic lithosphere covered by a thrust belt consisting of gneisses, metasediments and metavolcanics of Neoarchaean to Proterozoic age.
New structural and seismologic evidence from the Rwenzori Mountains, Uganda, indicate that continental rifts can capture and rotate fragments of the lithosphere while rift segments interact, in a manner analogous to the interaction of small-scale fractures. The Rwenzori Mountains are a basement block within the western branch of the East African Rift System that is located at the intersection of two rift segments and is apparently rotating clockwise. Structural data and new seismological data from earthquake epicentres indicate a large-scale, 20-km-long transsection fault is currently detaching the Rwenzori micro-plate on its northern margin from the larger Victoria plate (Tanzania craton), whereas it is already fully detached in the south. We propose that this fault develops due to the rotation of the Rwenzori block. In a numerical model we show how rift segment interaction, block rotation and the development of transsection faults (faults that cut through the Rwenzori Mountains) evolve through time. The model suggests that uplift of the Rwenzori block can only take place after the rift has opened significantly, and rotation leads to the development of transsection faults that connect two rift segments, so that the block is captured within the rifts. Our numerical model suggests that the majority of the uplift has taken place within the last 8 Ma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.