Abstract. Reconstructing the evolution of foreland basins that experienced late exhumation is challenging due to an incomplete sedimentary record. Thermochronometry has been applied successfully to reconstruct basin evolution, but the method is subject to uncertainties. For the Swiss Molasse Basin, a wide range of exhumation magnitude and timing has been proposed based on thermochronometry. We aim to reduce uncertainty by dating larger numbers of grains and samples, to obtain statistically more robust data. New apatite (U-Th-Sm)/He (AHe) data from a single borehole shows ages of 4 to 30 Ma in the upper 500 meters and ages of 3 to 80 Ma below 1300 meters. This is counterintuitive as a total reset is expected at depths exceeding approximately 600 m. To arrive at a single consistent thermal history including our and previously published data, we conduct thermal modeling with different software. In particular we test the influence of different provenance histories and distinguish between cooling associated with changes in heat flow vs changes in exhumation. We determine 1050 m +/- 100 m of exhumation, starting slowly at 13 Ma and accelerating at 9 Ma. Coinciding with exhumation, heat flow begins to rise sharply, causing heating until 5 Ma, despite ongoing exhumation. We show that this discrepancy between start of exhumation and start of cooling is the main reason for differing estimates for the burial and exhumation history of the basin. We suggest that the remaining misfit between modeled and measured Molasse AHe ages can be explained by post-Miocene hydrothermal flux in the Neogene sediment fill above a sealing layer, potentially the Opalinus Clay or Triassic evaporites. In summary, we show that a single consistent model for basin exhumation relies on large sets of grains and samples, as well as inclusion of provenance ages in the models. With timing of the main exhumation phase constrained to start at 9 Ma, we can rule out a 5 Ma climatic event as exhumation driver. As the region is not affected by extensive faulting, deep seated processes related to mantle dynamics remain as exhumation driving process.
<p>Stylolites are ubiquitous structures generated by pressure solution primarily found in limestones. They and have been used as indicator for maximum stress a rock has suffered. This is commonly done by characterizing the fractal dimensions of stylolites. The current canon is the expectation from the theory that stylolites form through two physical pressure-driven regimes: low-frequency and higher-energetic - dominated by elastic forces and high-frequency lower-energetic dominated by surface tension. The so-called characteristic length separates both regimes, analytically marked by a kink in the power spectrum, which relates the energy contributions to the frequency.</p><p>However, determining this kink is not straightforward, and requires additional assumptions. We present a data set of stylolites recovered from a drill hole in the Alpine foreland basin. We mapped stylolites from different depths at sub-mm resolution semi-automatically and analyzed them using new methods of fractal analysis.</p><p>Excitingly, our preliminary studies did not identify the expected kink&#8217;s position from several different images of probes of drill cores, despite satisfactory reliability of laboratory preparation. Standard methods such as power spectral density, averaging wavelet coefficients, RMS, min/max, and rescaled range-based approaches revealed variations in their results, generally without evidence for a kink in the corresponding graphs. Implementing more recently developed methods such as adaptive fractal analysis could not improve the results. This finding challenges the classic interpretation of fractal characteristics of stylolites.&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.