Cyber-enabled and cyber-physical systems connect and engage virtually every mission-critical military capability today. And as more warfighting technologies become integrated and connected, both the risks and opportunities from a cyberwarfare continue to grow-motivating sweeping requirements and investments in cybersecurity assessment capabilities to evaluate technology vulnerabilities, operational impacts, and operator effectiveness.Operational testing of cyber capabilities, often in conjunction with major military exercises, provides valuable connections to and feedback from the operational warfighter community. These connections can help validate capability impact on the mission and, when necessary, provide coursecorrecting feedback to the technology development process and its stakeholders. However, these tests are often constrained in scope, duration, and resources and require a thorough and wholistic approach, especially with respect to cyber technology assessments, where additional safety and security constraints are often levied.This report presents a summary of the state of the art in cyber assessment technologies and methodologies and prescribes an approach to the employment of cyber range operational exercises (OPEXs). Numerous recommendations on general cyber assessment methodologies and cyber range design are included, the most significant of which are summarized below.• Perform bottom-up and top-down assessment formulation methodologies to robustly link mission and assessment objectives to metrics, success criteria, and system observables.
The transistors used to construct Integrated Circuits (ICs) continue to shrink. While this shrinkage improves performance and density, it also reduces trust: the price to build leading-edge fabrication facilities has skyrocketed, forcing even nation states to outsource the fabrication of high-performance ICs. Outsourcing fabrication presents a security threat because the black-box nature of a fabricated IC makes comprehensive inspection infeasible. Since prior work shows the feasibility of fabrication-time attackers' evasion of existing post-fabrication defenses, IC designers must be able to protect their physical designs before handing them off to an untrusted foundry. To this end, recent work suggests methods to harden IC layouts against attack. Unfortunately, no tool exists to assess the effectiveness of the proposed defenses, thus leaving defensive gaps.This paper presents an extensible IC layout security analysis tool called IC Attack Surface (ICAS) that quantifies defensive coverage. For researchers, ICAS identifies gaps for future defenses to target, and enables the quantitative comparison of existing and future defenses. For practitioners, ICAS enables the exploration of the impact of design decisions on an IC's resilience to fabrication-time attack. ICAS takes a set of metrics that encode the challenge of inserting a hardware Trojan into an IC layout, a set of attacks that the defender cares about, and a completed IC layout and reports the number of ways an attacker can add each attack to the design. While the ideal score is zero, practically, we find that lower scores correlate with increased attacker effort.To demonstrate ICAS' ability to reveal defensive gaps, we analyze over 60 layouts of three real-world hardware designs (a processor, AES and DSP accelerators), protected with existing defenses. We evaluate the effectiveness of each circuit-defense combination against three representative attacks from the literature. Results show that some defenses are ineffective and others, while effective at reducing the attack surface, leave 10's to 1000's of unique attack implementations that an attacker can exploit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.