A contact-free optical technique is developed to enable a spatially resolved measurement of minority carrier diffusion length and the associated mobility-lifetime (μτ ) product in bulk semiconductor materials. A scanning electron microscope is used in combination with an internal optical microscope and imaging charge-coupled device (CCD) to image the bulk luminescence from minority carrier recombination associated with one-dimensional excess carrier generation. Using a Green's function to model steady-state minority carrier diffusion in a three-dimensional half space, non-linear least squares analysis is then applied to extract values of carrier diffusion length and surface recombination velocity. The approach enables measurement of spatial variations in the μτ product with a high degree of spatial resolution. [http://dx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.