Summary: More and more cancer studies use next-generation sequencing (NGS) data to detect various types of genomic variation. However, even when researchers have such data at hand, single-nucleotide polymorphism arrays have been considered necessary to assess copy number alterations and especially loss of heterozygosity (LOH). Here, we present the tool Control-FREEC that enables automatic calculation of copy number and allelic content profiles from NGS data, and consequently predicts regions of genomic alteration such as gains, losses and LOH. Taking as input aligned reads, Control-FREEC constructs copy number and B-allele frequency profiles. The profiles are then normalized, segmented and analyzed in order to assign genotype status (copy number and allelic content) to each genomic region. When a matched normal sample is provided, Control-FREEC discriminates somatic from germline events. Control-FREEC is able to analyze overdiploid tumor samples and samples contaminated by normal cells. Low mappability regions can be excluded from the analysis using provided mappability tracks.Availability: C++ source code is available at: http://bioinfo.curie.fr/projects/freec/Contact: freec@curie.frSupplementary information: Supplementary data are available at Bioinformatics online.
Motivation: In silico prediction of drug–target interactions from heterogeneous biological data is critical in the search for drugs for known diseases. This problem is currently being attacked from many different points of view, a strong indication of its current importance. Precisely, being able to predict new drug–target interactions with both high precision and accuracy is the holy grail, a fundamental requirement for in silico methods to be useful in a biological setting. This, however, remains extremely challenging due to, amongst other things, the rarity of known drug–target interactions.Results: We propose a novel supervised inference method to predict unknown drug–target interactions, represented as a bipartite graph. We use this method, known as bipartite local models to first predict target proteins of a given drug, then to predict drugs targeting a given protein. This gives two independent predictions for each putative drug–target interaction, which we show can be combined to give a definitive prediction for each interaction. We demonstrate the excellent performance of the proposed method in the prediction of four classes of drug–target interaction networks involving enzymes, ion channels, G protein-coupled receptors (GPCRs) and nuclear receptors in human. This enables us to suggest a number of new potential drug–target interactions.Availability: An implementation of the proposed algorithm is available upon request from the authors. Datasets and all prediction results are available at http://cbio.ensmp.fr/~yyamanishi/bipartitelocal/.Contact: kevbleakley@gmail.comSupplementary information: Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.