A series of phenyl end-capped α-oligothiophenes containing four to seven thiophene subunits (4T–7T) was synthesized utilizing palladium-catalyzed cross-coupling reactions. UV/Vis spectroscopic analysis revealed one broad absorption band that shifts bathochromically with increasing number of thiophene units. Structured emission spectra are observed with Stokes shift ν~4000 cm−1 and quantum yields of up to 53%. End-capping of the oligothiophene molecules by phenyl units does not only extend the effective conjugation but also prevents from α–α-homocoupling upon electrochemical oxidation. Accordingly, reversible redox waves are observed in cyclic voltammetry with up to four reversible one-electron processes for the two longer congeners. Analyses of the first two oxidation processes in the framework of multiredox systems provide insight into the stabilization or destabilization of polaronic and bipolaronic states. An unusual zig-zag trend for the first (and to a lesser extend second) oxidation process could be explained by the sterical encumbrance of solubilizing hexyl chains in 5T and 7T molecules which counteract the formation of a fully planar quinoidal oligothiophene backbone.
A series of donor‐acceptor (D−A) macrocyclic dyads consisting of an electron‐poor perylene bisimide (PBI) π‐scaffold bridged with electron‐rich α‐oligothiophenes bearing four, five, six and seven thiophene units between the two phenyl‐imide substituents has been synthesized and characterized by steady‐state UV/Vis absorption and fluorescence spectroscopy, cyclic and differential pulse voltammetry as well as transient absorption spectroscopy. Tying the oligothiophene strands in a conformationally fixed macrocyclic arrangement leads to a more rigid π‐scaffold with vibronic fine structure in the respective absorption spectra. Electrochemical analysis disclosed charged state properties in solution which are strongly dependent on the degree of rigidification within the individual macrocycle. Investigation of the excited state dynamics revealed an oligothiophene bridge size‐dependent fast charge transfer process for the macrocyclic dyads upon PBI subunit excitation.
Two macrocyclic architectures comprising oligothiophene strands that connect the imide positions of a perylene bisimide (PBI) dye have been synthesized via a platinum‐mediated cross‐coupling strategy. The crystal structure of the double bridged PBI reveals all syn‐arranged thiophene units that completely enclose the planar PBI chromophore via a 12‐membered macrocycle. The target structures were characterized by steady‐state UV/Vis absorption, fluorescence and transient absorption spectroscopy, as well as cyclic and differential pulse voltammetry. Both donor–acceptor dyads show ultrafast Förster Resonance Energy Transfer and photoinduced electron transfer, thereby leading to extremely low fluorescence quantum yields even in the lowest polarity cyclohexane solvent.
The unsymmetric P/P cyclodiphosphazane framework [(S[double bond, length as m-dash])(H)P(μ-NBu)PNHBu] (2) provides entry into the mixed chalgogenide dianion [(S)P(μ-NBu)P(Se)NBu], and unique insight into the mechanisms of cis/trans isomerism in phosph(iii)- and phosph(v)-azanes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.