The Border Gateway Protocol (BGP) is the de facto interdomain routing protocol of the Internet. Although the performance of BGP has been historically acceptable, there are continuing concerns about its ability to meet the needs of the rapidly evolving Internet. A major limitation of BGP is its failure to adequately address security. Recent outages and security analyses clearly indicate that the Internet routing infrastructure is highly vulnerable. Moreover, the design and ubiquity of BGP has frustrated past efforts at securing interdomain routing. This paper considers the vulnerabilities currently existing within interdomain routing and surveys works relating to BGP security. The limitations and advantages of proposed solutions are explored, and the systemic and operational implications of their designs considered. We note that no current solution has yet found an adequate balance between comprehensive security and deployment cost. This work calls not only for the application of ideas described within this paper, but also for further investigation into the problems and solutions of BGP security.
Voice Processing Systems (VPSes), now widely deployed, have been made significantly more accurate through the application of recent advances in machine learning. However, adversarial machine learning has similarly advanced and has been used to demonstrate that VPSes are vulnerable to the injection of hidden commands -audio obscured by noise that is correctly recognized by a VPS but not by human beings. Such attacks, though, are often highly dependent on white-box knowledge of a specific machine learning model and limited to specific microphones and speakers, making their use across different acoustic hardware platforms (and thus their practicality) limited. In this paper, we break these dependencies and make hidden command attacks more practical through model-agnostic (blackbox) attacks, which exploit knowledge of the signal processing algorithms commonly used by VPSes to generate the data fed into machine learning systems. Specifically, we exploit the fact that multiple source audio samples have similar feature vectors when transformed by acoustic feature extraction algorithms (e.g., FFTs). We develop four classes of perturbations that create unintelligible audio and test them against 12 machine learning models, including 7 proprietary models (e.g., Google Speech API, Bing Speech API, IBM Speech API, Azure Speaker API, etc), and demonstrate successful attacks against all targets. Moreover, we successfully use our maliciously generated audio samples in multiple hardware configurations, demonstrating effectiveness across both models and real systems. In so doing, we demonstrate that domain-specific knowledge of audio signal processing represents a practical means of generating successful hidden voice command attacks.
Garbled circuits provide a powerful tool for jointly evaluating functions while preserving the privacy of each user's inputs. While recent research has made the use of this primitive more practical, such solutions generally assume that participants are symmetrically provisioned with massive computing resources. In reality, most people on the planet only have access to the comparatively sparse computational resources associated with their mobile phones, and those willing and able to pay for access to public cloud computing infrastructure cannot be assured that their data will remain unexposed. We address this problem by creating a new SFE protocol that allows mobile devices to securely outsource the majority of computation required to evaluate a garbled circuit. Our protocol, which builds on the most efficient garbled circuit evaluation techniques, includes a new outsourced oblivious transfer primitive that requires significantly less bandwidth and computation than standard OT primitives and outsourced input validation techniques that force the cloud to prove that it is executing all protocols correctly. After showing that our extensions are secure in the malicious model, we conduct an extensive performance evaluation for a number of standard SFE test applications as well as a privacy-preserving navigation application designed specifically for the mobile usecase. Our system reduces execution time by 98.92% and bandwidth by 99.95% for the edit distance problem of size 128 compared to non-outsourced evaluation. These results show that even the least capable devices are capable of evaluating some of the largest garbled circuits generated for any platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.