Summary1. Invasive annual grasses alter fire regimes in shrubland ecosystems of the western USA, threatening ecosystem function and fragmenting habitats necessary for shrub-obligate species such as greater sage-grouse. Post-fire stabilization and rehabilitation treatments have been administered to stabilize soils, reduce invasive species spread and restore or establish sustainable ecosystems in which native species are well represented. Long-term effectiveness of these treatments has rarely been evaluated. 2. We studied vegetation at 88 sites where aerial or drill seeding was implemented following fires between 1990 and 2003 in Great Basin (USA) shrublands. We examined sites on loamy soils that burned only once since 1970 to eliminate confounding effects of recurrent fire and to assess soils most conducive to establishment of seeded species. We evaluated whether seeding provided greater cover of perennial seeded species than burned-unseeded and unburnedunseeded sites, while also accounting for environmental variation. 3. Post-fire seeding of native perennial grasses generally did not increase cover relative to burned-unseeded areas. Native perennial grass cover did, however, increase after drill seeding when competitive non-natives were not included in mixes. Seeding non-native perennial grasses and the shrub Bassia prostrata resulted in more vegetative cover in aerial and drill seeding, with non-native perennial grass cover increasing with annual precipitation. Seeding native shrubs, particularly Artemisia tridentata, did not increase shrub cover or density in burned areas. Cover of undesirable, non-native annual grasses was lower in drill seeded relative to unseeded areas, but only at higher elevations. 4. Synthesis and applications. Management objectives are more likely to be met in highelevation or precipitation locations where establishment of perennial grasses occurred. On lower and drier sites, management objectives are unlikely to be met with seeding alone. Intensive restoration methods such as invasive plant control and/or repeated sowings after establishment failures due to weather may be required in subsequent years. Managers might consider using native-only seed mixtures when establishment of native perennial grasses is the goal. Post-fire rehabilitation provides a land treatment example where long-term monitoring can inform adaptive management decisions to meet future objectives, particularly in arid landscapes where recovery is slow.
. 2014. Quantifying restoration effectiveness using multi-scale habitat models: implications for sage-grouse in the Great Basin. Ecosphere 5(3):31. http://dx.doi.org/10.1890/ES13-00278.1Abstract. A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of occupancy in 211 randomly located plots within a 40 million ha portion of the species' range. We then used these models to predict sage-grouse habitat quality at 826 plots associated with 101 post-wildfire seeding projects implemented from 1990 to 2003. We also compared conditions at restoration sites to published habitat guidelines. Sage-grouse occupancy was positively related to plot-and landscape-level dwarf sagebrush (Artemisia arbuscula, A. nova, A. tripartita) and big sagebrush steppe prevalence, and negatively associated with non-native plants and human development. The predicted probability of sage-grouse occupancy at treated plots was low on average (0.09) and not substantially different from burned areas that had not been treated. Restoration sites with quality habitat tended to occur at higher elevation locations with low annual temperatures, high spring precipitation, and high plant diversity. Of 313 plots seeded after fire, none met all sagebrush guidelines for breeding habitats, but approximately 50% met understory guidelines, particularly for perennial grasses. This pattern was similar for summer habitat. Less than 2% of treated plots met winter habitat guidelines. Restoration actions did not increase the probability of burned areas meeting most guideline criteria. The probability of meeting guidelines was influenced by a latitudinal gradient, climate, and topography. Our results suggest that sage-grouse are relatively unlikely to use many burned areas within 20 years of fire, regardless of treatment. Understory habitat conditions are more likely to be adequate than overstory conditions, but in most climates, establishing forbs and reducing cheatgrass dominance is unlikely. Reestablishing sagebrush cover will require more than 20 years using past restoration methods. Given current fire frequencies and restoration capabilities, protection of landscapes containing a mix of dwarf sagebrush and big sagebrush steppe, minimal human development, and low non-native plant cover may provide the best opportunity for conservation of sage-grouse habitats.
Forecasts of climate change for the Pacific northwestern United States predict warmer temperatures, increased winter precipitation, and drier summers. Prediction of forest growth responses to these climate fluctuations requires identification of climatic variables limiting tree growth, particularly at limits of tree species distributions. We addressed this problem at the pine-woodland ecotone using tree-ring data for western juniper (Juniperus occidentalis var. occidentalis Hook.) and ponderosa pine (Pinus ponderosa Dougl. ex Loud.) from southern Oregon. Annual growth chronologies for 1950-2000 were developed for each species at 17 locations. Correlation and linear regression of climate-growth relationships revealed that radial growth in both species is highly dependent on October-June precipitation events that recharge growing season soil water. Mean annual radial growth for the nine driest years suggests that annual growth in both species is more sensitive to drought at lower elevations and sites with steeper slopes and sandy or rocky soils. Future increases in winter precipitation could increase productivity in both species at the pine-woodland ecotone. Growth responses, however, will also likely vary across landscape features, and our findings suggest that heightened sensitivity to future drought periods and increased temperatures in the two species will predominantly occur at lower elevation sites with poor water-holding capacities.Résumé : Les changements climatiques envisagés pour la région nord-ouest du Pacifique, aux É tats-Unis, prédisent des températures plus chaudes, une augmentation des précipitations en hiver et des étés plus secs. La prédiction de la réaction en croissance des forêts à ces fluctuations climatiques exige qu'on identifie les variables climatiques qui limitent la croissance des arbres, particulièrement à la limite de l'aire de répartition des espèces d'arbres. Nous abordons ce problème à la limite de la forêt claire de pin à l'aide de données dendrochronologiques pour le genévrier occidental (Juniperus occidentalis var. occidentalis Hook.) et le pin ponderosa (Pinus ponderosa Dougl. ex Loud.) dans le sud de l'Oregon. Des chronologies de la croissance annuelle de 1950 à 2000 ont été construites pour chaque espèce à 17 endroits. Les analyses de corrélation et de régression linéaire des relations entre le climat et la croissance ont montré que la croissance radiale chez les deux espèces est fortement dépendante des épisodes de précipitations d'octobre à juin parce qu'elles rechargent le sol en eau pour la saison de croissance. La croissance radiale annuelle moyenne pour les neuf années les plus sèches indique que la croissance annuelle des deux espèces est plus sensible à la sécheresse à basse altitude ainsi que dans les stations avec une pente plus abrupte et un sol sableux ou rocheux. L'augmentation future des précipitations hivernales pourrait accroître la productivité des deux espèces à la limite de la forêt claire de pin. Cependant, la réaction en croissance variera probablement en ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.