SUMMARYA Petrov-Galerkin projection method is proposed for reducing the dimension of a discrete non-linear static or dynamic computational model in view of enabling its processing in real time. The right reduced-order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposition method. The left reduced-order basis is selected to minimize the two-norm of the residual arising at each Newton iteration. Thus, this basis is iteration-dependent, enables capturing of non-linearities, and leads to the globally convergent Gauss-Newton method. To avoid the significant computational cost of assembling the reduced-order operators, the residual and action of the Jacobian on the right reduced-order basis are each approximated by the product of an invariant, large-scale matrix, and an iteration-dependent, smaller one. The invariant matrix is computed using a data compression procedure that meets proposed consistency requirements. The iteration-dependent matrix is computed to enable the least-squares reconstruction of some entries of the approximated quantities. The results obtained for the solution of a turbulent flow problem and several non-linear structural dynamics problems highlight the merit of the proposed consistency requirements. They also demonstrate the potential of this method to significantly reduce the computational cost associated with high-dimensional non-linear models while retaining their accuracy.
The Gauss-Newton with approximated tensors (GNAT) method is a nonlinear model reduction method that operates on fully discretized computational models. It achieves dimension reduction by a Petrov-Galerkin projection associated with residual minimization; it delivers computational efficency by a hyperreduction procedure based on the 'gappy POD' technique. Originally presented in Ref.[1], where it was applied to implicit nonlinear structural-dynamics models, this method is further developed here and applied to the solution of a benchmark turbulent viscous flow problem. To begin, this paper develops global state-space error bounds that justify the method's design and highlight its advantages in terms of minimizing components of these error bounds. Next, the paper introduces a 'sample mesh' concept that enables a distributed, computationally efficient implementation of the GNAT method in finite-volume-based computational-fluiddynamics (CFD) codes. The suitability of GNAT for parameterized problems is highlighted with the solution of an academic problem featuring moving discontinuities. Finally, the capability of this method to reduce by orders of magnitude the core-hours required for large-scale CFD computations, while preserving accuracy, is demonstrated with the simulation of turbulent flow over the Ahmed body. For an instance of this benchmark problem with over 17 million degrees of freedom, GNAT outperforms several other nonlinear model-reduction methods, reduces the required computational resources by more than two orders of magnitude, and delivers a solution that differs by less than 1% from its high-dimensional counterpart.
Nearly all model-reduction techniques project the governing equations onto a linear subspace of the original state space. Such subspaces are typically computed using methods such as balanced truncation, rational interpolation, the reduced-basis method, and (balanced) proper orthogonal decomposition (POD). Unfortunately, restricting the state to evolve in a linear subspace imposes a fundamental limitation to the accuracy of the resulting reduced-order model (ROM). In particular, linear-subspace ROMs can be expected to produce low-dimensional models with high accuracy only if the problem admits a fast decaying Kolmogorov n-width (e.g., diffusion-dominated problems). Unfortunately, many problems of interest exhibit a slowly decaying Kolmogorov n-width (e.g., advection-dominated problems). To address this, we propose a novel framework for projecting dynamical systems onto nonlinear manifolds using minimum-residual formulations at the time-continuous and time-discrete levels; the former leads to manifold Galerkin projection, while the latter leads to manifold least-squares Petrov-Galerkin (LSPG) projection. We perform analyses that provide insight into the relationship between these proposed approaches and classical linear-subspace reduced-order models; we also derive a posteriori discrete-time error bounds for the proposed approaches. In addition, we propose a computationally practical approach for computing the nonlinear manifold, which is based on convolutional autoencoders from deep learning. Finally, we demonstrate the ability of the method to significantly outperform even the optimal linear-subspace ROM on benchmark advection-dominated problems, thereby demonstrating the method's ability to overcome the intrinsic n-width limitations of linear subspaces.
Least-squares Petrov-Galerkin (LSPG) model-reduction techniques such as the Gauss-Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level.This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge-Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be 'matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.