Background Breast cancer is the most prevalent and among the most deadly cancers in females. Patients with breast cancer have highly variable survival lengths, indicating a need to identify prognostic biomarkers for personalized diagnosis and treatment. With the development of new technologies such as next-generation sequencing, multi-omics information are becoming available for a more thorough evaluation of a patient’s condition. In this study, we aim to improve breast cancer overall survival prediction by integrating multi-omics data (e.g., gene expression, DNA methylation, miRNA expression, and copy number variations (CNVs)). Methods Motivated by multi-view learning, we propose a novel strategy to integrate multi-omics data for breast cancer survival prediction by applying complementary and consensus principles. The complementary principle assumes each -omics data contains modality-unique information. To preserve such information, we develop a concatenation autoencoder (ConcatAE) that concatenates the hidden features learned from each modality for integration. The consensus principle assumes that the disagreements among modalities upper bound the model errors. To get rid of the noises or discrepancies among modalities, we develop a cross-modality autoencoder (CrossAE) to maximize the agreement among modalities to achieve a modality-invariant representation. We first validate the effectiveness of our proposed models on the MNIST simulated data. We then apply these models to the TCCA breast cancer multi-omics data for overall survival prediction. Results For breast cancer overall survival prediction, the integration of DNA methylation and miRNA expression achieves the best overall performance of 0.641 ± 0.031 with ConcatAE, and 0.63 ± 0.081 with CrossAE. Both strategies outperform baseline single-modality models using only DNA methylation (0.583 ± 0.058) or miRNA expression (0.616 ± 0.057). Conclusions In conclusion, we achieve improved overall survival prediction performance by utilizing either the complementary or consensus information among multi-omics data. The proposed ConcatAE and CrossAE models can inspire future deep representation-based multi-omics integration techniques. We believe these novel multi-omics integration models can benefit the personalized diagnosis and treatment of breast cancer patients.
Breast cancer is the most prevalent and among the most deadly cancers in females. Patients with breast cancer have highly variable survival rates, indicating a need to identify prognostic biomarkers. By integrating multi-omics data (e.g., gene expression, DNA methylation, miRNA expression, and copy number variations (CNVs)), it is likely to improve the accuracy of patient survival predictions compared to prediction using single modality data. Therefore, we propose to develop a machine learning pipeline using decision-level integration of multi-omics tumor data from The Cancer Genome Atlas (TCGA) to predict the overall survival of breast cancer patients. With multi-omics data consisting of gene expression, methylation, miRNA expression, and CNVs, the top performing model predicted survival with an accuracy of 85% and area under the curve (AUC) of 87%. Furthermore, the model was able to identify which modalities best contributed to prediction performance, identifying methylation, miRNA, and gene expression as the best integrated classification combination. Our method not only recapitulated several breast cancerspecific prognostic biomarkers that were previously reported in the literature but also yielded several novel biomarkers. Further analysis of these biomarkers could lend insight into the molecular mechanisms that lead to poor survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.