Having accurate gate generation is essential for precise control of a quantum system. The generated gate usually suffers from linear and nonlinear distortion. Previous works have demonstrated how to use a qubit to correct linear frequency distortions but have not commented on how to handle nonlinear distortions. This is an important issue as we show that nonlinear amplitude distortions from the RF electronics can affect Rabi pulses by as much as 10%. We present work that demonstrates how a transmon qubit can be used as a highly sensitive cryogenic detector to characterize these nonlinear amplitude distortions. We show that a correction can drive these errors down to <1% over a 700 MHz range. This correction technique provides a method to minimize the effects of signal distortions and can be easily applied to broadband control pulses to produce higher fidelity arbitrary quantum gates.
Building usefully coherent superconducting quantum processors depends on reducing losses in their constituent materials.1 Tantalum, like niobium, has proven utility as the primary superconducting layer within highly coherent qubits.2,3 But, unlike Nb, high temperatures are typically used to stabilize the desirable body-centered-cubic phase, α-Ta, during thin film deposition. It has long been known that a thin Nb layer permits the room-temperature nucleation of α-Ta,4-6 although neither an epitaxial process nor few-photon microwave loss measurements have been reported for Nb-nucleated Ta films prior to this study. We compare resonators patterned from Ta films grown at high temperature (500 °C) and films nucleated at room temperature, in order to understand the impact of crystalline order on quantum coherence. In both cases, films grew with Al2O3 (001) || Ta (110) indicating that the epitaxial orientation is independent of temperature and is preserved across the Nb/Ta interface. We use conventional low-power spectroscopy to measure two level system (TLS) loss, as well as an electric-field bias technique to measure the effective dipole moments of TLS in the surfaces of resonators. In our measurements, Nb-nucleated Ta resonators had greater loss tangent (1.5 ± 0.1 × 10-5) than nonnucleated (5 ± 1 × 10-6) in approximate proportion to defect densities as characterized by X-ray diffraction (0.27 ° vs 0.18 ° [110] reflection width) and electron microscopy (30 nm vs 70 nm domain size). The dependence of the loss tangent on domain size indicates that the development of more ordered Ta films is likely to lead to improvements in qubit coherence times.1,7 Moreover, lowtemperature α-Ta epitaxy may enable the growth of new, microstate-free heterostructures which would not withstand high temperature processing.8
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.