The integrated sensing and communication (ISAC), in which the sensing and communication share the same frequency band and hardware, has emerged as a key technology in future wireless systems due to two main reasons. First, many important application scenarios in fifth generation (5G) and beyond, such as autonomous vehicles, Wi-Fi sensing and extended reality, requires both high-performance sensing and wireless communications. Second, with millimeter wave and massive multiple-input multiple-output (MIMO) technologies widely employed in 5G and beyond, the future communication signals tend to have high-resolution in both time and angular domain, opening up the possibility for ISAC. As such, ISAC has attracted tremendous research interest and attentions in both academia and industry. Early works on ISAC have been focused on the design, analysis and optimization of practical ISAC technologies for various ISAC systems. While this line of works are necessary, it is equally important to study the fundamental limits of ISAC in order to understand the gap between the current state-of-the-art technologies and the performance limits, and provide useful insights and guidance for the development of better ISAC technologies that can approach the performance limits. In this paper, we aim to provide a comprehensive survey for the current research progress on the fundamental limits of ISAC. Particularly, we first propose a systematic classification method for both traditional radio sensing (such as radar sensing and wireless localization) and ISAC so that they can be naturally incorporated into a unified framework. Then we summarize the major performance metrics and bounds used in sensing, communications and ISAC, respectively. After that, we present the current research progresses on fundamental limits of each class Manuscript
Detection and interpretation of human activities have emerged as a challenging healthcare problem in areas such as assisted living and remote monitoring. Besides traditional approaches that rely on wearable devices and camera systems, WiFi based technologies are evolving as a promising solution for indoor monitoring and activity recognition. This is, in part, due to the pervasive nature of WiFi in residential settings such as homes and care facilities, and unobtrusive nature of WiFi based sensing. Advanced signal processing techniques can accurately extract WiFi channel status information (CSI) using commercial off-theshelf (COTS) devices or bespoke hardware. This includes phase variations, frequency shifts and signal levels. In this paper, we describe the healthcare application of Doppler shifts in the WiFi CSI, caused by human activities which take place in the signal coverage area. The technique is shown to recognize different types of human activities and behaviour and be very suitable for applications in healthcare. Three experimental case studies are presented to illustrate the capabilities of WiFi CSI Doppler sensing in assisted living and residential care environments. We also discuss the potential opportunities and practical challenges for real-world scenarios.
Abstract-The design and implementation of a real-time passive high Doppler resolution radar system is described in this paper. Batch processing and pipelined processing flow are introduced for reducing the processing time to enable real-time display. The proposed method is implemented on a software defined radio (SDR) platform. Two experiments using this system are described: one based on small human body motions and another one on hand gesture detection. The results from these experiments show that the proposed system can be used in a range of application scenarios such as eHealth, human-machine interaction and high accuracy indoor target tracking.
Unsupervised Domain Adaptation (UDA) aims to transfer domain knowledge from existing well-defined tasks to new ones where labels are unavailable. In the real-world applications, as the domain (task) discrepancies are usually uncontrollable, it is significantly motivated to match the feature distributions even if the domain discrepancies are disparate. Additionally, as no label is available in the target domain, how to successfully adapt the classifier from the source to the target domain still remains an open question. In this paper, we propose the Re-weighted Adversarial Adaptation Network (RAAN) to reduce the feature distribution divergence and adapt the classifier when domain discrepancies are disparate. Specifically, to alleviate the need of common supports in matching the feature distribution, we choose to minimize optimal transport (OT) based Earth-Mover (EM) distance and reformulate it to a minimax objective function. Utilizing this, RAAN can be trained in an end-to-end and adversarial manner. To further adapt the classifier, we propose to match the label distribution and embed it into the adversarial training. Finally, after extensive evaluation of our method using UDA datasets of varying difficulty, RAAN achieved the state-of-the-art results and outperformed other methods by a large margin when the domain shifts are disparate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.