Although virtual reality simulators have established construct validity, no studies have proven transfer of skills from a simulator to improved in vivo surgical skill. The current authors hypothesized that simulation training would improve residents' basic arthroscopic performance and safety. Twenty-two orthopedic surgery trainees were randomized into simulation or standard practice groups. At baseline testing, all of the participants performed simulator-based testing and a supervised, in vivo diagnostic shoulder arthroscopy with video recording. The simulation group subsequently received 1 hour of total instruction during a 3-month period, and the standard practice group received no simulator training. After intervention, both groups were reevaluated with simulator testing and a second recorded diagnostic shoulder arthroscopy. Two blinded, independent experts evaluated arthroscopic performance using the anatomic checklist, Arthroscopic Surgery Skill Evaluation Tool (ASSET) score, and total elapsed time. All outcome measures were compared within and between groups. After intervention, mean time required by the simulation group to complete the simulator task (30.64 seconds) was 8±1.2 seconds faster than the time required by the control group (38.64 seconds; P=.001). Probe distance (51.65 mm) was improved by 41.2±6.08 mm compared with the control (92.83 mm; P=.001). When comparing ASSET safety scores, the simulation group was competent (3.29) and significantly better than the control group (3.00; P=.005) during final arthroscopic testing. This study establishes transfer validity for an arthroscopic shoulder simulator model. Simulator training for residents in training can decrease surgical times, improve basic surgical skills, and confer greater patient safety during shoulder arthroscopy. [Orthopedics. 2016; 39(3):e479-e485.].
This study suggests that greater resident clinical experience and shoulder arthroscopy experience are both reflected in improved performance of basic tasks on a shoulder simulator. These findings warrant further investigation to determine if training on a validated arthroscopic shoulder simulator would improve clinical arthroscopic skills.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.