The proteasome inhibitor bortezomib (also known as PS-341/ Velcade) is a dipeptidyl boronic acid that has recently been approved for use in patients with multiple myeloma. Bortezomib inhibits the activity of the 26S proteasome and induces cell death in a variety of tumor cells; however, the mechanism of cytotoxicity is not well understood. In this report, oligonucleotide microarray analysis of the 8226 multiple myeloma cell line showed a predominant induction of gene products associated with the endoplasmic reticulum secretory pathway following short-term, high-dose exposure to bortezomib. Examination of mediators of endoplasmic reticulum stress-induced cell death showed specific activation of caspase 12, as well as of caspases 8, 9, 7, and 3, and cleavage of bid. Treatment of myeloma cells with bortezomib also showed disregulation of intracellular Ca 2+ as a mechanism of caspase activation. Cotreatment with a panel of Ca 2+ -modulating agents identified the mitochondrial uniporter as a critical regulatory factor in bortezomib cytotoxicity. The uniporter inhibitors ruthenium red and Ru360 prevented caspase activation and bid cleavage, and almost entirely inhibited bortezomib-induced cell death, but had no effect on any other chemotherapeutic drug examined. Additional Ca 2+ -modulating agents, including 2-amino-ethoxydiphenylborate, 1,2-bis (o-aminophenoxy) ethane-tretraacetic acid (acetoxymethyl) ester, and dantrolene, did not alter bortezomib cytotoxicity. Analysis of intracellular Ca 2+ showed that the ruthenium-containing compounds inhibited Ca 2+ store loading and abrogated the desensitized capacitative calcium influx associated with bortezomib treatment. These data support the hypothesis that intracellular Ca 2+ disregulation is a critical determinant of bortezomib cytotoxicity. (Cancer Res 2005; 65(9): 3828-36)
Lynch RM, Weber CS, Nullmeyer KD, Moore ED, Paul RJ. Clearance of store-released Ca 2ϩ by the Na ϩ -Ca 2ϩ exchanger is diminished in aortic smooth muscle from Na ϩ -K ϩ -ATPase ␣2-isoform gene-ablated mice.
C2C12 cells offer a useful model to study the differentiation of non-muscle cells to skeletal muscle cells. Myosin phosphorylation and changes in related enzymes, with an emphasis on myosin phosphatase (MP) were analyzed over the first 6 days of C2C12 differentiation. There was a transition from myosin phosphatase target subunit 1 (MYPT1), predominant in the non-muscle cells to increased expression of MYPT2. Levels of MYPT1/2 were estimated, and both isoforms were higher in non- or partially differentiated cells compared to the concentrations in the differentiated isolated myotubes from day 6. A similar profile of expression was estimated for the type 1 protein phosphatase catalytic subunit, delta isoform (PP1c delta). Phosphatase activities, using phosphorylated smooth and skeletal muscle myosins, were estimated for total cell lysates and isolated myotubes. In general, smooth muscle myosin was the preferred substrate. Although the expression of MYPT1/2 and PP1c delta was considerably reduced in isolated myotubes the phosphatase activities were not reduced to corresponding levels. Most of the MP activity was due to PP1c, as indicated by okadaic acid. In spite of relatively high expression of MYPT1/2 and PP1c delta, marked phosphorylation of non-muscle myosin (over 50% of total myosin) was observed at day 2 (onset of expression of muscle-specific proteins) and both mono- and diphosphorylated light chains were observed. Partial inhibition of MLCK by 1-(5-chloronaphthalene-1-sulphonyl)-1H-hexahydro-1,4-diazepine HCl (ML-9) or by a construct designed from the autoinhibitory domain of MLCK, resulted in an increase in small myotubes (3-5 nuclei) after 3 days of differentiation and a decrease in larger myotubes (compared to control). The effect of ML-9 was not due to a reduction in intracellular Ca2+ levels. These results suggest that phosphorylation of non-muscle myosin is important in growth of myotubes, either in the fusion process to form larger myotubes or indirectly, by its role in sarcomere organization.
Previous studies have shown that circulating Angiotensin II (A-II) increases renal Na+ reabsorption via elevated Na+/H+ exchanger isoform 3 (NHE3) activity. We hypothesized that prolonged exposure to A-II leads to an increased expression of renal NHE3 by a transcriptionally mediated mechanism. To test this hypothesis, we utilized the proximal tubule-like OKP cell line to evaluate the effects of 16-h treatment with A-II on NHE3 activity and gene expression. A-II significantly stimulated NHE3-mediated, S-3226-sensitive Na+/H+ exchange. Inhibition of transcription with actinomycin D abolished the stimulatory effect of A-II on NHE3-mediated pH recovery in acid-loaded OKP cells. This prolonged exposure to A-II was also found to elevate endogenous NHE3 mRNA (by 40%)-an effect also abolished by inhibition of gene transcription. To evaluate the molecular mechanism by which A-II regulates NHE3 expression, the activity of NHE3 promoter driven reporter gene was analyzed in transient transfection assays. In transfected OKP cells, rat NHE3 promoter activity was significantly stimulated by A-II treatment, and preliminary mapping indicated that the A-II responsive element(s) is present between 149 and 548 bp upstream of the transcription initiation site in the NHE3 gene promoter. We conclude that a transcriptional mechanism is at least partially responsible for the chronic effects of A-II treatment on renal NHE3 activity.
Luminal acidification is important for the maturation of secretory granules, yet little is known regarding the regulation of pH within them. A pH-sensitive green fluorescent protein (EGFP) was targeted to secretory granules in RIN1046-38 insulinoma cells by using a construct in which the EGFP gene was preceded by the nucleotide sequence for human growth hormone. Stimulatory levels of glucose doubled EGFP secretion from cell cultures, and potentiators of glucose-induced insulin secretion enhanced EGFP release. Thus this targeted EGFP is useful for population measurements of secretion. However, less than ~4% of total cell EGFP was released after 1.5 h of stimulation. Consequently, when analyzed in single cells, fluorescence of the targeted EGFP acts as an indicator of pH within secretory granules. Glucose elicited a decrease in granule pH, whereas inhibitors of the V-type H(+)-ATPase increased pH and blocked the glucose effect. Granule pH also was modified by effectors of the protein kinase A pathway, with activation eliciting granule alkalinization, suggesting that potentiation of peptide release by cAMP may involve regulated changes in secretory granule pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.