Immotile bovine caput epididymal sperm contain levels of protein phosphatase activity twofold higher than do mature motile caudal sperm. Comparison of the inhibition profiles of endogenous phosphatase activities detected by okadaic acid (OA) and calyculin A (CA) revealed a pattern consistent with the predominance of a type 1 protein phosphatase (PP1). Immunoblot analysis identified PP1 gamma 2 (the testis-specific isoform of PP1) as the only PP1 isoform in sperm and showed little protein phosphatase 2A (PP2A). In addition, of the known PP1 inhibitors, i.e., DARPP-32, inhibitor 1 (I1), and inhibitor 2 (I2), only I2-like activity was detected in sperm. Inhibition of PP1 by the heat-stable I2-like activity purified from sperm could be reversed with purified glycogen synthase kinase-3 (GSK-3). Furthermore, sperm extracts contain an inactive complex of PP1 and I2 (termed PP1I) that could also be activated by purified GSK-3. The presence of GSK-3 in sperm was demonstrated by activation of purified PP1I, and quantitation revealed that immotile caput sperm contained sixfold higher GSK-3 activity than motile caudal sperm. Immunoblot analysis confirmed the expression of GSK-3 in sperm and revealed the occurrence of both the alpha and beta isoforms. Our findings suggest that the higher PP1 activity measured in immotile sperm, presumably due to higher GSK-3 activity, is responsible for holding motility in check. This conclusion was supported by the observation that the phosphatase inhibitors OA and CA, at micromolar and nanomolar levels, respectively, were able to induce motility in completely immotile bovine caput epididymal sperm and to stimulate the kinetic activity of mature caudal sperm. The intrasperm levels of cAMP, pH, and calcium were unaltered by treatment with these inhibitors. The results suggest a biochemical basis for the development and regulation of sperm motility and a possible physiological role for the PP1/I2/GSK-3 system.
Sperm motility is regulated by protein phosphorylation. We have recently shown that a serine/threonine phosphatase system is involved in motility regulation. Two of the components of the phosphatase system, GSK-3 and PP1gamma2, are regulated by tyrosine phosphorylation. During our investigation of sperm tyrosine-phosphorylated proteins we discovered a 55-kDa protein whose tyrosine phosphorylation correlates closely to the motility state of sperm. This protein is tyrosine phosphorylated to a much higher degree in motile caudal than in immotile caput epididymal sperm. Motility inhibition of caudal epididymal sperm by protein kinase A (PKA) anchoring inhibition or by ionomycin-induced calcium overload led to the virtual disappearance of tyrosine phosphorylation of the 55-kDa protein. Conversely, treatment of sperm with motility activators, isobutylmethylxanthine or 8-bromo-cAMP, resulted in increased tyrosine phosphorylation of the protein. The protein was present in the soluble 100 000 x g supernatants of sperm extracts and was heat labile. Chromatography through diethylaminoethyl-cellulose and Western blot analysis showed that this 55-kDa protein is not a regulatory subunit of PKA or alpha-tubulin. Our results represent the identification of a soluble protein whose tyrosine phosphorylation varies directly with motility and suggest that motility regulation may involve cross talk between PKA, calcium, and tyrosine kinase pathways.
Bovine epididymal sperm resuspended in ionic buffers take up relatively large amounts of calcium. This uptake, which is almost entirely mitochondrial, apparently bypasses the sperm cytosol. The direct mitochondrial loading is an unusual aspect of sperm calcium uptake, which suggests that the plasma membrane region surrounding the mitochondria should be highly permeable to calcium, whereas the membrane domains surrounding the head and tail regions of sperm should be impermeable. This study was undertaken to determine the role of a plasma membrane calcium ATPase in sperm calcium homeostasis. Kinetics of calcium (45Ca2+) uptake into intact and permeabilized caudal epididymal sperm confirmed that mitochondrial calcium uptake occurs with virtually no resistance from the surrounding plasma membrane. Cytoplasmic calcium accumulation by sperm depleted of intracellular ATP, measured in the presence of mitochondrial calcium uptake inhibitors, showed no increase upon energy depletion as would be expected if an ATP-dependent calcium extrusion mechanism were present. Furthermore, lowering the incubation temperature to further reduce the activity of the calcium ATPase in these energy-depleted sperm was also without effect on calcium accumulation. The calcium ATPase inhibitor vanadate, even at high concentrations, failed to increase intracellular 45Ca2+ accumulation. However, vanadate was effective in inhibiting motility showing that the compound was accumulated into sperm to inhibit flagellar dyenin ATPase. Therefore, the lack of effect of vanadate on 45Ca2+ accumulation was not due to its inability to enter sperm. Other calcium ATPase inhibitors such as quercetin, thapsigargin, and cyclopiazonic acid, which readily demonstrate ATP-dependent calcium extrusion in other somatic cells, were also without effect on sperm calcium accumulation.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.