Interleukin 11 (IL-11) is a pleiotropic cytokine with biological activities on many different cell types. Recombinant human IL-11 (rhIL-11) is produced by recombinant DNA technology in Escherichia coli. Both in vitro and in vivo, rhIL-11 has shown effects on multiple hematopoietic cell types. Its predominant in vivo hematopoietic activity is the stimulation of peripheral platelet counts in both normal and myelosuppressed animals. This activity is mediated through effects on both early and late progenitor cells to stimulate megakaryocyte differentiation and maturation. rhIL-11 has been approved for the treatment of chemotherapy-induced thrombocytopenia. The hematopoietic effects of rhIL-11 are most likely direct effects on progenitor cells and megakaryocytes in combination with other cytokines or growth factors. rhIL-11 also induces secretion of acute phase proteins (ferritin, haptoglobin, C-reactive protein, and fibrinogen) from the liver. The induction of heme oxidase and inhibition of several P450 oxidases have been reported from in vitro studies. In vivo, rhIL-11 treatment decreases sodium excretion by the kidney by an unknown mechanism and induces hemodilution. rhIL-11 also exhibits anti-inflammatory effects in a variety of animal models of acute and chronic inflammation, including inflammatory bowel disease, inflammatory skin disease, autoimmune joint disease, and various infection-endotoxemia syndromes. rhIL-11 has trophic effects on non-transformed intestinal epithelium under conditions of mucosal damage. The mechanism of the anti-inflammatory activity of rhIL-11 has been extensively studied. rhIL-11 directly affects macrophage and T cell effector function. rhIL-11 inhibits tumor necrosis factor-alpha (TNF alpha), interleukin 1beta (IL-1beta), interleukin 12 (IL-12), interleukin 6 (IL-6), and nitric oxide (NO) production from activated macrophages in vitro. The inhibition of cytokine production was associated with inhibition of nuclear translocation of the transcription factor, nuclear factor kappa B (NF-kappaB). The block to NF-kappaB nuclear translocation correlates with the ability of rhIL-11 to maintain or enhance production of the inhibitors of NF-kappaB, IkappaB-alpha and IkappaB-beta. In addition to effects on macrophages, rhIL-11 also reduces CD4+ T cell production of Th1 cytokines, such as IFN gamma induced by IL-12, while enhancing Th2 cytokine production. rhIL-11 also blocks IFN gamma production in vivo. The molecular effects of rhIL-11 have also been studied in a clinical trial. Molecular analysis of skin biopsies of patients with psoriasis before and during rhIL-11 treatment demonstrates a decrease in mRNA levels of TNF alpha, IFN gamma and iNOS. These activities suggest that in addition to its thrombopoietic clinical use, rhIL-11 may also be valuable in the treatment of inflammatory diseases. The clinical utility of the anti-inflammatory properties of rhIL-11 is being investigated in patients with Crohn's disease, psoriasis and rheumatoid arthritis. These diseases are believed to be initiated...
Spatial solute concentration profiles resulting from in vivo microdialysis were measured in rat caudate-putamen by quantitative autoradiography. Radiolabeled sucrose was included in the dialysate, and the tissue concentration profile measured after infusions of 14 min and 61.5 min in an acute preparation. In addition, the changes in sucrose extraction fraction over time were followed in vivo and in a simple in vitro system consisting of 0.5% agarose. These experimental results were then compared with mathematical simulations of microdialysis in vitro and in vivo. Simulations of in vitro microdialysis agreed well with experimental results. In vivo, the autoradiograms of the tissue concentration profiles showed clear evidence of substantial differences between 14 and 61.5 min, even though the change in extraction fraction was relatively small over that period. Comparison with simulated results showed that the model substantially underpredicted the observed extraction fraction and overall amount of sucrose in the tissue. A sensitivity analysis of the various model parameters suggested a tissue extracellular volume fraction of approximately 40% following probe implantation. We conclude that the injury from probe insertion initially causes disruption of the blood-brain barrier in the vicinity of the probe, and this disruption leads to an influx of water and plasma constituents, causing a vasogenic edema.
Good practices around model‐informed drug discovery and development (MID3) aim to improve the implementation, standardization, and acceptance of these approaches within drug development and regulatory review. A survey targeted to clinical pharmacology and pharmacometric colleagues across industry, the US Food and Drug Administration (FDA), and the European Medicines Agency (EMA) was conducted to understand current and future roles of MID3. The documented standards were generally affirmed as a “good match” to current industry practice and regulatory expectations, with some identified gaps that are discussed. All have seen at least a “modest” step forward in MID3 implementation associated with greater organizational awareness and share the expectation for a future wider use and impact. The priority within organizations was identified as a limitation with respect to the future of MID3. Finally, potential solutions, including a global overarching MID3 regulatory guideline, to facilitate greater acceptance by industry and regulatory decision makers are discussed.
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT• Inhibition of cholesteryl ester transfer protein (CETP) is considered a potential new mechanism for the treatment of dyslipidaemia. Whereas several studies have described the effects of the CETP inhibitors, torcetrapib (Pfizer) and dalcetrapib (Roche), on lipids and lipoproteins, few studies have characterized the effect of rising single doses on the pharmacokinetics and pharmacodynamics (CETP activity) of an individual CETP inhibitor or have described the effects of intrinsic and extrinsic factors on the pharmacokinetics and pharmacodynamics of these agents. WHAT THIS STUDY ADDS• We have characterized the exposure/response relationship for the inhibition of CETP activity over a wide exposure range. We have shown that single doses of anacetrapib produced marked and dose-dependent inhibition of serum CETP activity with peak effects of 90% inhibition at tmax and persistent inhibition at 24 h post-dose. We have also shown that whereas food increased exposures to anacetrapib significantly and variably, age, gender and obese status did not meaningfully influence the pharmacokinetics and pharmacodynamics of anacetrapib. AIMSAnacetrapib is an orally active and potent inhibitor of CETP in development for the treatment of dyslipidaemia. These studies endeavoured to establish the safety, tolerability, pharmacokinetics and pharmacodynamics of rising single doses of anacetrapib, administered in fasted or fed conditions, and to preliminarily assess the effect of food, age, gender and obesity on the single-dose pharmacokinetics and pharmacodynamics of anacetrapib. METHODSSafety, tolerability, anacetrapib concentrations and CETP activity were evaluated. RESULTSAnacetrapib was rapidly absorbed, with peak concentrations occurring at~4 h post-dose and an apparent terminal half-life ranging from~9 to 62 h in the fasted state and from~42 to~83 h in the fed state. Plasma AUC and Cmax appeared to increase in a less than approximately dose-dependent manner in the fasted state, with an apparent plateau in absorption at higher doses. Single doses of anacetrapib markedly and dose-dependently inhibited serum CETP activity with peak effects of 90% inhibition at tmax and~58% inhibition at 24 h post-dose. An Emax model best described the plasma anacetrapib concentration vs CETP activity relationship with an EC50 of~22 nM. Food increased exposure to anacetrapib; up to~two-three-fold with a low-fat meal and by up to~six-eight fold with a high-fat meal. Anacetrapib pharmacokinetics and pharmacodynamics were similar in elderly vs young adults, women vs men, and obese vs non-obese young adults. Anacetrapib was well tolerated and was not associated with any meaningful increase in blood pressure. CONCLUSIONSWhereas food increased exposure to anacetrapib significantly, age, gender and obese status did not meaningfully influence anacetrapib pharmacokinetics and pharmacodynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.