Eukaryotic cells coordinate growth with the availability of nutrients through mTOR complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag GTPases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. We present the 2.7-Å crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucine leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. These results provide a structural mechanism of amino acid sensing by the mTORC1 pathway.
Nuclear pore complexes (NPCs) perforate the nuclear envelope and serve as the primary transport gates for molecular exchange between nucleus and cytoplasm. Stripping the megadalton complex down to its most essential organizational elements, one can divide the NPC into scaffold components, and the disordered elements attached to it that generate a selective barrier between compartments. These structural elements exhibit flexibility, which may hold a clue in understanding NPC assembly and function. Here we review the current status of NPC research with a focus on the functional implications of its structural and compositional heterogeneity.
SummaryThe mechanistic Target of Rapamycin Complex 1 (mTORC1) is a major regulator of eukaryotic growth that coordinates anabolic and catabolic cellular processes with inputs such as growth factors and nutrients, including amino acids1–3. In mammals, arginine is particularly important and promotes diverse physiological effects including immune cell activation, insulin secretion, and muscle growth, largely through activation of mTORC14–7. Arginine activates mTORC1 upstream of the Rag GTPases8, through either the lysosomal amino acid transporter SLC38A9 or the GATOR2-interacting CASTOR1 (Cellular Arginine Sensor for mTORC1)9–12. However, the mechanism by which the mTORC1 pathway detects and transmits the arginine signal has been elusive. Here, we present the 1.8 Å crystal structure of arginine-bound CASTOR1. Homodimeric CASTOR1 binds arginine at the interface of two ACT domains, enabling allosteric control of the adjacent GATOR2-binding site to trigger dissociation from GATOR2 and the downstream activation of mTORC1. Our data reveal that CASTOR1 shares substantial structural homology with the lysine-binding regulatory domain of prokaryotic aspartate kinases, suggesting that the mTORC1 pathway exploited an ancient amino-acid-dependent allosteric mechanism to acquire arginine sensitivity. Together, these results establish a structural basis for arginine sensing by the mTORC1 pathway and provide insights into the evolution of a mammalian nutrient sensor.
D assemblies make up half of the von Willebrand factor (VWF), yet are of unknown structure. D1 and D2 in the prodomain and D′D3 in mature VWF at Golgi pH form helical VWF tubules in Weibel Palade bodies and template dimerization of D3 through disulfides to form ultralong VWF concatemers. D′D3 forms the binding site for factor VIII. The crystal structure of monomeric D′D3 with cysteine residues required for dimerization mutated to alanine was determined at an endoplasmic reticulum (ER)-like pH. The smaller C8-3, TIL3 (trypsin inhibitor-like 3), and E3 modules pack through specific interfaces as they wind around the larger, N-terminal, Ca2+-binding von Willebrand D domain (VWD) 3 module to form a wedge shape. D′ with its TIL′ and E′ modules projects away from D3. The 2 mutated cysteines implicated in D3 dimerization are buried, providing a mechanism for protecting them against premature disulfide linkage in the ER, where intrachain disulfide linkages are formed. D3 dimerization requires co-association with D1 and D2, Ca2+, and Golgi-like acidic pH. Associated structural rearrangements in the C8-3 and TIL3 modules are required to expose cysteine residues for disulfide linkage. Our structure provides insight into many von Willebrand disease mutations, including those that diminish factor VIII binding, which suggest that factor VIII binds not only to the N-terminal TIL′ domain of D′ distal from D3 but also extends across 1 side of D3. The organizing principle for the D3 assembly has implications for other D assemblies and the construction of higher-order, disulfide-linked assemblies in the Golgi in both VWF and mucins.
The nuclear pore complex (NPC) is the principal gateway for transport into and out of the nucleus. Selectivity is achieved through the hydrogel-like core of the NPC. The structural integrity of the NPC depends on ~15 architectural proteins, which are organized in distinct subcomplexes to form the >40 MDa ring-like structure. Here we present the 4.1 Å crystal structure of a heterotetrameric core element (‘hub’) of the Y-complex, the essential NPC building block, from Myceliophthora thermophila. Using the ‘hub’ structure together with known Y-complex fragments we built the entire ~0.5 MDa Y-complex. Our data reveal that the conserved core of the Y-complex has 6, rather than 7 members. Evolutionarily distant Y-complex assemblies share a conserved core that is very similar in shape and dimension, suggesting that there are closely related architectural codes for constructing the NPC in all eukaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.