Fossils and molecular data are two independent sources of information that should in principle provide consistent inferences of when evolutionary lineages diverged. Here we use an alternative approach to genetic inference of species split times in recent human and ape evolution that is independent of the fossil record. We first use genetic parentage information on a large number of wild chimpanzees and mountain gorillas to directly infer their average generation times. We then compare these generation time estimates with those of humans and apply recent estimates of the human mutation rate per generation to derive estimates of split times of great apes and humans that are independent of fossil calibration. We date the human-chimpanzee split to at least 7-8 million years and the population split between Neanderthals and modern humans to 400,000-800,000 y ago. This suggests that molecular divergence dates may not be in conflict with the attribution of 6-to 7-million-y-old fossils to the human lineage and 400,000-yold fossils to the Neanderthal lineage.hominin | molecular dating | primate | speciation O ver 40 y ago, Sarich and Wilson used immunological data to propose that humans and African great apes diverged only about 5 million y ago, some three to four times more recently than had been assumed on the basis of the fossil record (1). Although contentious at the time (e.g., ref. 2), this divergence has since been repeatedly estimated from DNA sequence data at 4-6 million years ago (Ma) (3-8). However, this estimate is incompatible with the attribution of fossils older than 6 Ma to the human lineage. Although the assignment of fossils such as the ∼6 Ma Orrorin (9) and the 6-7 Ma Sahelanthropus (10) to the human lineage remains controversial (11), it is also possible that the divergence dates inferred from DNA sequence data are too recent.The total amount of sequence differences observed today between two evolutionary lineages can be expressed as the sum of two values: the sequence differences that accumulated since gene flow ceased between the lineages ("split time") and the sequence differences that correspond to the diversity in the common ancestor of both lineages. The extent of variation in the ancestral species may be estimated from the variance of DNA sequence differences observed across different parts of the genome between the species today, which will be larger the greater the level of variation in the ancestral population. By subtracting this value from the total amount of sequence differences, the sequence differences accumulated since the split can be estimated. The rate at which DNA sequence differences accumulate in the genome ("mutation rate") is needed to then convert DNA sequence differences into split times.In prior research, mutation rates have been calculated using species split times estimated from the fossil record as calibration points. For calculating split times between present-day humans and great apes, calibration points that assume DNA sequence differences between humans and orangutans...
Our closest living relatives, chimpanzees and bonobos, have a complex demographic history. We have analyzed the high-coverage whole genomes of 75 wild-born chimpanzees and bonobos from ten countries in Africa. We find that chimpanzee population sub-structure makes genetic information a good predictor of geographic origin at country and regional scales. Most strikingly, multiple lines of evidence suggest that gene flow occurred from bonobos into the ancestors of central and eastern chimpanzees between 200 and 550 thousand years ago (Kya), probably with subsequent spread into Nigeria-Cameroon chimpanzees. Together with another possibly more recent contact (after 200 Kya), bonobos contributed less than 1% to the central chimpanzee genomes. Admixture thus appears to have been widespread during hominid evolution.
Animals that maintain cooperative relationships show gains in longevity and offspring survival. However, little is known about the cognitive or hormonal mechanisms involved in cooperation. Indeed, there is little support for a main hypothesis that non-human animals have the cognitive capacities required for bookkeeping of cooperative exchanges. We tested an alternative hypothesis that cooperative relationships are facilitated by an endocrinological mechanism involving oxytocin, a hormone required for bonding in parental and sexual relationships across mammals. We measured urinary oxytocin after single bouts of grooming in wild chimpanzees. Oxytocin levels were higher after grooming with bond partners compared with nonbond partners or after no grooming, regardless of genetic relatedness or sexual interest. We ruled out other possible confounds, such as grooming duration, grooming direction or sampling regime issues, indicating that changes in oxytocin levels were mediated by social bond strength. Oxytocin, which is thought to act directly on neural reward and social memory systems, is likely to play a key role in keeping track of social interactions with multiple individuals over time. The evolutionary linkage of an ancestral hormonal system with complex social cognition may be the primary mechanism through which long-term cooperative relationships develop between both kin and non-kin in mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.