Exosomes participate in cancer metastasis, but studying them presents unique challenges as a result of their small size and purification difficulties. Asymmetrical field flow fractionation with in-line ultraviolet absorbance, dynamic light scattering, and multi-angle light scattering was applied to the size separation and characterization of non-labeled B16-F10 exosomes from an aggressive mouse melanoma cell culture line. Fractions were collected and further analyzed using batch mode dynamic light scattering, transmission electron microscopy and compared with known size standards. Fractogram peak positions and computed radii show good agreement between samples and across fractions. Ultraviolet absorbance fractograms in combination with transmission electron micrographs were able to resolve subtle heterogeneity of vesicle retention times between separate batches of B16-F10 exosomes collected several weeks apart. Further, asymmetrical field flow fractionation also effectively separated B16-F10 exosomes into vesicle subpopulations by size. Overall, the flow field flow fractionation instrument combined with multiple detectors was able to rapidly characterize and separate exosomes to a degree not previously demonstrated. These approaches have the potential to facilitate a greater understanding of exosome function by subtype, as well as ultimately allow for “label-free” isolation of large scale clinical exosomes for the purpose of developing future exosome-based diagnostics and therapeutics.
The influence of buffer substitution and dilution effects on exosome size and electrophoretic mobility were shown for the first time. Cyclical electrical field flow fractionation (Cy-El-FFF) in various substituted fluids was applied to exosomes and other particles. Tested carrier fluids of deionized (DI) water, 1× phosphate buffered saline (PBS), 0.308 M trehalose, and 2% isopropyl alcohol (IPA) influenced Cy-El-FFF-mediated isolation of A375 melanoma exosomes. All fractograms revealed a crescent-shaped trend in retention times with increasing voltage with the maximum retention time at ∼1.3 V AC. A375 melanoma exosome recovery was approximately 70–80% after each buffer substitution, and recovery was independent of whether the sample was substituted into 1× PBS or DI water. Exosome dilution in deionized water produced a U-shaped dependence on electrophoretic mobility. The effect of dilution using 1× PBS buffer revealed a very gradual change in electrophoretic mobility of exosomes from ∼−1.6 to −0.1 μm cm/s V, as exosome concentration was decreased. This differed from the use of DI water, where a large change from ∼−5.5 to −0.1 μm cm/s V over the same dilution range was observed. Fractograms of separated A375 melanoma exosomes in two substituted low-ionic-strength buffers were compared with synthetic particle fractograms. Overall, the ability of Cy-El-FFF to separate exosomes based on their size and charge is a highly promising, label-free approach to initially catalogue and purify exosome subtypes for biobanking as well as to enable further exosome subtype interrogations.
Sperm preparation is critical to achieving a successful intrauterine insemination and requires the processing of a semen sample to remove white blood cells, wash away seminal plasma, and reduce sample volume. We present an automated instrument capable of performing a sperm preparation starting with a diluted semen sample. We compare our device against a density gradient centrifugation by processing 0.5 mL portions of patient samples through each treatment. In 5 min of operating time, the instrument recovers an average of 86% of all sperm and 82% of progressively motile sperm from the original sample while removing white blood cells, replacing the seminal plasma, and reducing the volume of the sample to the clinically required level. In 25 min of operating time, density gradient centrifugation recovers an average of 33% of all sperm and 41% of progressively motile sperm. The automated instrument could improve access to IUI as a treatment option by allowing satellite doctor’s offices to offer intrauterine insemination as an option for patients without the clinical support required by existing methods.
Nanoscale and microscale cell-derived extracellular vesicle types and subtypes are of significant interest to researchers in biology and medicine. Extracellular vesicles (EVs) have diagnostic and therapeutic potential in terms of biomarker and nanomedicine applications. To enable such applications, EVs must be isolated from biological fluids or separated from other EV types. Developing methods to fractionate EVs is of great importance to EV researchers. Our goal was to begin to develop a device that would separate medium EVs (mEVs, traditionally termed microvesicles or shedding vesicles) and small EVs (sEVs, traditionally termed exosomes) by elasto-inertial effect. We sought to develop a miniaturized technology that works similar to and provides the benefits of differential ultracentrifugation but is more suitable for EV-based microfluidic applications. The aim of this study was to determine whether we could use elasto-inertial focusing to re-isolate and recover U87 mEVs and sEVs from a mixture of mEVs and sEVs isolated initially by one round of differential ultracentrifugation. The studied spiral channel device can continuously process 5 ml of sample fluid per hour. Using the channel, sEVs and mEVs were recovered and re-isolated from a mixture of U87 glioma cell-derived mEVs and sEVs pre-isolated by one round of differential ultracentrifugation. Following two passes through the spiral channel, approximately 55% of sEVs were recovered with 6% contamination by mEVs (the recovered sEVs contained 6% of the total mEVs). In contrast, recovery of U87 mEVs and sEVs re-isolated using a typical second centrifugation wash step was only 8% and 53%, respectively. The spiral channel also performed similar to differential ultracentrifugation in reisolating sEVs while significantly improving mEV reisolation from a mixture of U87 sEVs and mEVs. Ultimately this technology can also be coupled to other microfluidic EV isolation methods in series and/or parallel to improve isolation and minimize loss of EV subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.