The first examples of Fe(II) PARACEST magnetic resonance contrast agents are reported (PARACEST = paramagnetic chemical exchange saturation transfer). The iron(II) complexes contain a macrocyclic ligand, either 1,4,7-tris(carbamoylmethyl)-1,4,7-triazacyclononane (L1) or 1,4,7-tris[(5-amino-6-methyl-2-pyridyl)methyl]-1,4,7-triazacyclononane (L2). The macrocycles bind Fe(II) in aqueous solution with formation constants of log K = 15.6 and 19.2, respectively and maintain the Fe(II) state in the presence of air. These complexes each contain six exchangeable protons for CEST which are amide protons in [Fe(L1)]2+ or amino protons in [Fe(L2)]2+. The CEST peak for the [Fe(L1)]2+ amide protons is at 69 ppm downfield of the bulk water resonance whereas the CEST peak for the [Fe(L2)]2+ amine protons is at 6 ppm downfield of bulk water. CEST imaging using a MRI scanner shows that the CEST effect can be observed in solutions containing low millimolar concentrations of complex at neutral pH, 100 mM NaCl, 20 mM buffer at 22 °C or 37 °C.
The zinc(II) complex of 1-(4-quinoylyl)methyl-1,4,7,10-tetraazacyclododecane (cy4q) binds selectively to thymine bulges in DNA and to a uracil bulge in RNA. Binding constants are in the low-micromolar range for thymine bulges in the stems of hairpins, for a thymine bulge in a DNA duplex, and for a uracil bulge in an RNA hairpin. Binding studies of Zn(cy4q) to a series of hairpins containing thymine bulges with different flanking bases showed that the complex had a moderate selectivity for thymine bulges with neighboring purines. The dissociation constants of the most strongly bound Zn(cy4q)-DNA thymine bulge adducts were 100-fold tighter than similar sequences with fully complementary stems or than bulges containing cytosine, guanine, or adenine. In order to probe the role of the pendent group, three additional zinc(II) complexes containing 1,4,7,10-tetraazacyclododecane (cyclen) with aromatic pendent groups were studied for binding to DNA including 1-(2-quinolyl)methyl-1,4,7,10-tetraazacyclododecane (cy2q), 1-(4-biphenyl)methyl-1,4,7,10-tetraazacyclododecane (cybp), and 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine (dsc). The Zn(cybp) complex binds with moderate affinity but little selectivity to DNA hairpins with thymine bulges and to DNA lacking bulges. Similarly, Zn(dsc) binds weakly both to thymine bulges and hairpins with fully complementary stems. The zinc(II) complex of cy2q has the 2-quinolyl moiety bound to the Zn(II) center, as shown by (1)H NMR spectroscopy and pH-potentiometric titrations. As a consequence, only weak (500 μM) binding is observed to DNA with no appreciable selectivity. An NMR structure of a thymine-bulge-containing hairpin shows that the thymine is extrahelical but rotated toward the major groove. NMR data for Zn(cy4q) bound to DNA containing a thymine bulge is consistent with binding of the zinc(II) complex to the thymine N3(-) and stacking of the quinoline on top of the thymine. The thymine-bulge bound zinc(II) complex is pointed into the major groove, and there are interactions with the guanine positioned 5' to the thymine bulge.
We report herein the synthesis and biological efficacy of near-infrared (NIR), bacteriochlorin analogues: 3-(1'-butyloxy)ethyl-3-deacetyl-bacteriopurpurin-18-N-butylimide methyl ester (3) and the corresponding carboxylic acid 10. In in vitro assays, compared to its methyl ester analogue 3, the corresponding carboxylic acid derivative 10 showed higher photosensitizing efficacy. However, due to drastically different pharmacokinetics in vivo, the PS 3 (HPLC purity >99%) showed higher tumor uptake and long-term tumor cure than 10 (HPLC purity >96.5%) in BALB/c mice bearing Colon 26 tumors. Isomerically pure R- and S- isomers of 3 (3a and 3b, purity by HPLC > 99%) under similar treatment parameters showed identical efficacy in vitro and in vivo. In addition, photosensitizer (PS) 3 showed limited skin phototoxicity and provides an additional advantage over the clinically approved chemically complex hematoporphyrin derivative as well as other porphyrin-based PDT agents, which makes 3 a promising dual-function agent for fluorescence-guided surgery with an option of phototherapy of cancer.
Six Zn(II) complexes of derivatives of 1,4,7,10-tetraazacyclododecane (cyclen) were studied for binding to DNA sequences containing non-canonical thymines, including a hairpin with a single thymine bulge (T-bulge) and a G-quadruplex (H-telo) containing thymine loops. The cyclen-based macrocycles contained pendents with either two fused rings to give planar groups including quinolinone (QMC), coumarin (MCC) and quinoline (CQC) derivatives or a non-planar dansyl group (DSC). Macrocyclic complexes with three fused rings including an anthraquinone pendent (ATQ) were also studied. All Zn(II) complexes were stable in solution at micromolar concentrations and neutral pH with the Zn(L)(OH2) species prevailing for L = QMC and CQC at pH 7.5 and 100 mM NaCl. Immobilized T-bulge or H-telo G-quadruplex was used to study binding of the complexes by surface plasmon resonance (SPR) for several of the complexes. For the most part, data matched well with that obtained by isothermal calorimetry (ITC) and, for fluorescent complexes, by fluorescence titrations. Data showed that Zn(II) complexes containing planar aromatic pendents with two fused rings bound to T-bulge more tightly than complexes with non-planar pendents such as DSC. The H-telo DNA exhibited multiple binding sites for all complexes containing aromatic pendents. The complexes with two fused rings bound with low micromolar dissociation constants and two binding sites whereas a complex with three fused rings (ATQ) bound to three sites. This study shows that different pendent groups on Zn(II) cyclen complexes impart selectivity for recognition of non-canonical DNA structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.