Multi-converter electronic systems are becoming widely used in many industrial applications; therefore, the stability of the whole system is a big concern to the real-world power supplies applications. A multi-converter system comprised of cascaded converters has a basic configuration that consists of two or more converters in series connection, where the first is a source converter that maintains a regulated dc voltage on the intermediate bus while remaining are load converters that convert the intermediate bus voltage to the tightly regulated outputs for the next system stage or load. Instability in cascaded systems may occur due to the constant power load (CPL), which is a behavior of the tightly regulated converters. CPLs exhibit incremental negative resistance behavior causing a high risk of instability in interconnected converters. In addition, there are other problems apart from the CPL, e.g., non-linearities due to the inductive element and uncertainties due to the imprecision of a mathematical model of dc-dc converters. Aiming to effectively mitigate oscillations effects in the output of source converter loaded with a CPL, in this paper, an interval robust controller, by linear programming based on Kharitonov rectangle, is proposed to regulate the output of source converter. Several tests were developed by using an experimental plant and simulation models when the multi-converter buck-buck system is subjected to a variation of power reference. Both simulation and experimental results show the effectiveness of the proposed controller. Furthermore, the performance indices computed from the experimental data show that the proposed controller outperforms a classical control technique. INDEX TERMS Constant power load (CPL), multi-converter buck-buck system, parametric uncertainties, robust control based on Kharitonov rectangle, mitigation oscillations in multi-converter buck-buck system.
In recent years, dc microgrid (MG) is increasing rapidly in electric power grids and other isolated systems, integrating more efficiency and suite better some of the renewable energy sources, storage units, and dc loads. However, dc MG stability analysis becomes a challenge when constant power loads (CPLs) are applied to dc bus, which introduces destabilizing effects in the system due to its negative impedance characteristics. This paper presents a novel robust controller, based on linear programming based on the Chebyshev theorem as a robust control technique considering the Kharitonov's theorem that ensures the minimization of the total deviation from the desired performance in a closed-loop system, specified by a family of characteristic polynomials. The purpose of the proposed controller is to tightly regulate the dc bus voltage, ensuring MG stability due to the effects of power variation on CPLs. The simulation and experimental tests are performed by using a MATLAB/Simulink simulator and a developed prototype of the DC MG system, respectively, to ratify the robustness and effectiveness of the proposed method of robust controller design.INDEX TERMS Constant power load (CPL), Chebyshev theorem, DC microgrid (MG), Kharitonov stability theorem, microgrid stability, robust control design.
Currently, high-performance power conversion requirements are of increasing interest in microgrid applications. In fact, isolated bidirectional dc-dc converters are widely used in modern dc distribution systems. The dual active bridge (DAB) dc-dc converter is identified as one of the most promising converter topology for the mentioned applications, due to its benefits of high power density, electrical isolation, bidirectional power flow, zero-voltage switching, and symmetrical structure. This study presents a power management control scheme in order to ensure the power balance of a dc microgrid in stand-alone operation, where the renewable energy source (RES) and the battery energy storage (BES) unit are interfaced by DAB converters. The power management algorithm, as introduced in this work, selects the proper operation of the RES system and BES system, based on load/generation power and state-of-charge of the battery conditions. Moreover, a nonlinear robust control strategy is proposed when the DAB converters are in voltage-mode-control in order to enhance the dynamic performance and robustness of the common dc-bus voltage, in addition to overcoming the instability problems that are caused by constant power loads and the dynamic interactions of power electronic converters. The simulation platform is developed in MATLAB/Simulink, where a photovoltaic system and battery system are selected as the typical RES and BES, respectively. Assessments on the performance of the proposed control scheme are conducted. Comparisons with the other control method are also provided.
This study presents the design and evaluation of a robust controller, based on frequencydomain, in order to enhance the performance of dc-dc power converters under parametric uncertainties. This robust control approach takes into account all possible uncertainties in the system such as load and input voltage variations. Thereby, the robust controller design is based on the constraints of the gain and/or phase margins delimited by these uncertainties in order to ensure robust performance and stability of the system. Assessments on the performance of the proposed robust control are conducted. Comparisons with other control methods are also provided. Experimental validations on a dc-dc buck converter system test board are carried out to verify the theoretical claims. INDEX TERMS Buck converter, dc-dc converter, frequency-domain, power electronics, parametric uncertainties, robust control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.