Sensitive and selective detection of multiply charged peptide ions from complex tryptic digests was achieved using high-field asymmetric waveform ion mobility spectrometry (FAIMS) combined with nanoscale liquid chromatography-mass spectrometry (nanoLC-FAIMS-MS). The combination of FAIMS provided a marked advantage over conventional nanoLC-MS experiments by reducing the extent of chemical noise associated with singly charged ions and enhancing the overall population of detectable tryptic peptides. Such advantages were evidenced by a 6-12-fold improvement in signal-to-noise ratio measurements for a wide range of multiply charged peptide ions. An increase of 20% in the number of detected peptides compared to conventional nanoelectrospray was achieved by transmitting ions of different mobilities at high electric field vs low field while simultaneously recording each ion population in separate mass spectrometry acquisition channels. This method provided excellent reproducibility across replicate nanoLC-FAIMS-MS runs with more than 90% of all detected peptide ions showing less than 30% variation in intensity. The application of this technique in the context of proteomics research is demonstrated for the identification of trace-level proteins showing differential expression in U937 monocyte cell extracts following incubation with phorbol ester.
We describe the use and application of high-field asymmetric waveform ion mobility spectrometry combined with nanoscale liquid chromatography mass spectrometry (nanoLC-FAIMS-MS) to improve the sensitivity and dynamic range of proteomics analyses on a hybrid LTQ-Orbitrap mass spectrometer. The ability of FAIMS to enrich multiply protonated peptides against background ions confers a marked advantage in proteomics analyses by decreasing the limits of detection to facilitate the identification of low-abundance peptide ions. These multiply charged ions are recorded into separate acquisition channels to enhance the overall population of detectable peptide ions from a single analysis. NanoLC-FAIMS-MS experiments performed on peptides spiked into complex proteins digests provided more than 10-fold improvement in limits of detection compared to conventional nanoelectrospray mass spectrometry. This enhancement of sensitivity is reflected by a 55% increase in the number of assigned MS/MS spectra contributing to an overall improvement in protein identification and sequence coverage. The application of FAIMS in label-free quantitative proteomics is demonstrated for the identification of differentially abundant proteins from human U937 monocytic cells exposed to phorbol ester.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.