The application of maximum likelihood estimation is not well studied for stochastic short rate models because of the cumbersome detail of this approach. We investigate the applicability of maximum likelihood estimation to stochastic short rate models. We restrict our consideration to three important short rate models, namely the Vasicek, Cox–Ingersoll–Ross (CIR) and 3/2 short rate models, each having a closed-form formula for the transition density function. The parameters of the three interest rate models are fitted to US cash rates and are found to be consistent with market assessments.
Generalized linear models might not be appropriate when the probability of extreme events is higher than that implied by the normal distribution. Extending the method for estimating the parameters of a double Pareto lognormal distribution (DPLN) in Reed and Jorgensen (2004), we develop an EM algorithm for the heavy-tailed Double-Pareto-lognormal generalized linear model. The DPLN distribution is obtained as a mixture of a lognormal distribution with a double Pareto distribution. In this paper the associated generalized linear model has the location parameter equal to a linear predictor which is used to model insurance claim amounts for various data sets. The performance is compared with those of the generalized beta (of the second kind) and lognorma distributions.
A discounted equity index is computed as the ratio of an equity index to the accumulated savings account denominated in the same currency. In this way, discounting provides a natural way of separating the modeling of the short rate from the market price of risk component of the equity index. In this vein, we investigate the applicability of maximum likelihood estimation to stochastic models of a discounted equity index, providing explicit formulae for parameter estimates. We restrict our consideration to two important index models, namely the Black–Scholes model and the minimal market model of Platen, each having an explicit formula for the transition density function. Explicit formulae for estimates of the model parameters and their standard errors are derived and are used in fitting the two models to US data. Further, we demonstrate the effect of the model choice on the no-arbitrage assumption employed in risk neutral pricing.
This paper proposes a shift in the valuation and production of long-term annuities, away from the classical risk-neutral methodology towards a methodology using the real-world probability measure. The proposed production method is applied to three examples of annuity products, one having annual payments linked to a mortality index and the savings account and the others having annual payments linked to a mortality index and an equity index with a guarantee that is linked to the same mortality index and the savings account. Out-of-sample hedge simulations demonstrate the effectiveness of the proposed less-expensive production method. In contrast to classical risk-neutral production, which revolves around the savings account as reference unit, the long-term best-performing portfolio, the numéraire portfolio of the equity market, is employed as the fundamental reference unit in the production of the annuity. The numéraire portfolio is the strictly positive, tradable portfolio that when used as denominator or benchmark makes all benchmarked non-negative portfolios supermartingales. Under real-world valuation, the initial benchmarked value of a benchmarked contingent claim equals its real-world conditional expectation. The proposed real-world valuation and production can lead to significantly lower values of long-term annuities and their less-expensive production than suggested by the risk-neutral approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.