The present study explored differences in dendritic/spine extent across several human cortical regions. Specifically, the basilar dendrites/spines of supragranular pyramidal cells were examined in eight Brodmann's areas (BA) arranged according to Benson's (1993, Behav Neurol 6:75-81) functional hierarchy: primary cortex (somatosensory, BA3-1-2; motor, BA4), unimodal cortex (Wernicke's area, BA22; Broca's area, BA44), heteromodal cortex (supple- mentary motor area, BA6beta; angular gyrus, BA39) and supramodal cortex (superior frontopolar zone, BA10; inferior frontopolar zone, BA11). To capture more general aspects of regional variability, primary and unimodal areas were designated as low integrative regions; heteromodal and supramodal areas were designated as high integrative regions. Tissue was obtained from the left hemisphere of 10 neurologically normal individuals (M(age) = 30 +/- 17 years; five males, five females) and stained with a modified rapid Golgi technique. Ten neurons were sampled from each cortical region (n = 800) and evaluated according to total dendritic length, mean segment length, dendritic segment count, dendritic spine number and dendritic spine density. Despite considerable inter-individual variation, there were significant differences across the eight Brodmann's areas and between the high and low integrative regions for all dendritic and spine measures. Dendritic systems in primary and unimodal regions were consistently less complex than in heteromodal and supramodal areas. The range within these rankings was substantial, with total dendritic length in BA10 being 31% greater than that in BA3-1-2, and dendritic spine number being 69% greater. These findings demonstrate that cortical regions involved in the early stages of processing (e.g. primary sensory areas) generally exhibit less complex dendritic/spine systems than those regions involved in the later stages of information processing (e.g. prefrontal cortex). This dendritic progression appears to reflect significant differences in the nature of cortical processing, with spine-dense neurons at hierarchically higher association levels integrating a broader range of synaptic input than those at lower cortical levels.
The present study quantitatively compared the basilar dendritic/spine systems of lamina V pyramidal neurons across four hierarchically arranged regions of neonatal human neocortex. Tissue blocks were removed from four Brodmann’s areas (BAs) in the left hemisphere of four neurologically normal neonates (mean age = 41 ± 40 days): primary (BA4 and BA3-1-2), unimodal (BA18), and supramodal cortices (BA10). Tissue was stained with a modified rapid Golgi technique. Ten cells per region (N = 160) were quantified. Despite the small sample size, significant differences in dendritic/spine extent obtained across cortical regions. Most apparent were substantial differences between BA4 and BA10: total dendritic length was 52% greater in BA4 than BA10, and dendritic spine number was 67% greater in BA4 than BA10. Neonatal patterns were compared to adult patterns, revealing that the relative regional pattern of dendritic complexity in the neonate was roughly the inverse of that established in the adult, with BA10 rather than BA4 being the most complex area in the adult. Overall, regional dendritic patterns suggest that the developmental time course of basilar dendritic systems is heterochronous and is more protracted for supramodal BA10 than for primary or unimodal regions (BA4, BA3-1-2, BA18).
Although the primate insular cortex has been studied extensively, a comprehensive investigation of its neuronal morphology has yet to be completed. To that end, neurons from 20 human subjects (10 males and 10 females; N = 600) were selected from the secondary gyrus brevis, precentral gyrus, and postcentral gyrus of the left insula. The secondary gyrus brevis was generally more complex in terms of dendritic/spine extent than either the precentral or postcentral insular gyri, which is consistent with the posterior-anterior gradient of dendritic complexity observed in other cortical regions. The male insula had longer, spinier dendrites than the female insula, potentially reflecting sex differences in interoception. In comparing the current insular data with regional dendritic data quantified from other Brodmann's areas (BAs), insular total dendritic length (TDL) was less than the TDL of high integration cortices (BA6beta, 10, 11, 39), but greater than the TDL of low integration cortices (BA3-1-2, 4, 22, 44). Insular dendritic spine number was significantly greater than both low and high integration regions. Overall, the insula had spinier, but shorter neurons than did high integration cortices, and thus may represent a specialized type of heteromodal cortex, one that integrates crude multisensory information crucial to interoceptive processes.
a substantial percentage of patients, especially if no predisposing factors were present. 3,7,8 However, the period of follow-up in these early studies was rarely more than 1 year. The presence of thalamic hemorrhage has been associated with a particularly poor outcome, with 10 of 12 demonstrating findings of cerebral palsy at 18 months.2 The presence, size, and location of venous infarction should also be an important factor in predicting outcome. Studies focusing on the severity of parenchymal brain injury, rather than on IVH, with longer periods of follow-up are needed to determine predictors of neurological sequelae after IVH among term newborns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.