Abstract-Our study analyzes the security and privacy properties of an implantable cardioverter defibrillator (ICD). Introduced to the U.S. market in 2003, this model of ICD includes pacemaker technology and is designed to communicate wirelessly with a nearby external programmer in the 175 kHz frequency range. After partially reverse-engineering the ICD's communications protocol with an oscilloscope and a software radio, we implemented several software radio-based attacks that could compromise patient safety and patient privacy. Motivated by our desire to improve patient safety, and mindful of conventional trade-offs between security and power consumption for resourceconstrained devices, we introduce three new zero-power defenses based on RF power harvesting. Two of these defenses are humancentric, bringing patients into the loop with respect to the security and privacy of their implantable medical devices (IMDs). Our contributions provide a scientific baseline for understanding the potential security and privacy risks of current and future IMDs, and introduce human-perceptible and zero-power mitigation techniques that address those risks. To the best of our knowledge, this paper is the first in our community to use general-purpose software radios to analyze and attack previously unknown radio communications protocols.
In Autonomous Vehicles (AVs), one fundamental pillar is perception, which leverages sensors like cameras and LiDARs (Light Detection and Ranging) to understand the driving environment. Due to its direct impact on road safety, multiple prior efforts have been made to study its the security of perception systems. In contrast to prior work that concentrates on camera-based perception, in this work we perform the first security study of LiDAR-based perception in AV settings, which is highly important but unexplored. We consider LiDAR spoofing attacks as the threat model and set the attack goal as spoofing obstacles close to the front of a victim AV. We find that blindly applying LiDAR spoofing is insufficient to achieve this goal due to the machine learning-based object detection process. Thus, we then explore the possibility of strategically controlling the spoofed attack to fool the machine learning model. We formulate this task as an optimization problem and design modeling methods for the input perturbation function and the objective function. We also identify the inherent limitations of directly solving the problem using optimization and design an algorithm that combines optimization and global sampling, which improves the attack success rates to around 75%. As a case study to understand the attack impact at the AV driving decision level, we construct and evaluate two attack scenarios that may damage road safety and mobility. We also discuss defense directions at the AV system, sensor, and machine learning model levels.
CCS CONCEPTS• Security and privacy → Domain-specific security and privacy architectures; • Computer systems organization → Neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.