Ross, M., Lajeunesse, P. & Kosar, K. G. A. 2010: The subglacial record of northern Hudson Bay: insights into the Hudson Strait Ice Stream catchment. Boreas, 10.1111/j.1502‐3885.2010.00176.x. ISSN 0300‐9483. In this paper, we present new insights into the glacial dynamics and potential configuration of the Hudson Strait Ice Stream catchment in the northern Hudson Bay–western Hudson Strait region. Our reconstruction is based on new field observations and till compositional data from Southampton Island, remote sensing imagery and multibeam bathymetric data from the Hudson Bay sea floor, as well as on a re‐examination of previously published data from this vast region. Our findings suggest that, during the late Quaternary, the HSIS catchment consisted of a number of ice‐stream tributaries feeding a curvilinear trunk that potentially extended into western Hudson Bay. In contrast to previous interpretations, the occurrence of fluted bedrock hills, over‐deepened basins, Dubawnt erratics and carbonaceous till on the islands at the head of Hudson Strait is taken to imply that cold‐based conditions did not prevail on these islands. The upland area of Southampton Island and the surrounding channels played an important role in controlling the location of the main tributaries, with the higher central terrain forming a large inter‐ice‐stream zone lacking carbonate detritus. Coats Island contains abundant evidence of vigorous ice flow, such as mega‐scale glacial lineations (MSGLs). MSGLs also occur on the sea floor southwest of Coats Island but the sea‐floor imprint is highly discontinuous. Observations on the western Hudson Bay mainland show evidence of southeastward fast ice flow that is spatially consistent with the Dubawnt dispersal train. Despite the geomorphological discontinuities, this may indicate that the HSIS onset zone extended far inside the Laurentide Ice Sheet and across contrasting geological domains.
Radiocarbon ages from Southampton Island (Canada) provide new chronological control on the deglaciation of Foxe Channel and northern Hudson Bay, a strategic area for understanding the demise of a marine-based portion of the Laurentide Ice Sheet. A regional marine reservoir age of 630 ± 45 yr and a reservoir offset (ΔR) of 263 ± 48 yr were calculated from two early to mid-Holocene terrestrial/marine radiocarbon age pairs. These values are consistent with corrections based on early 20th century mollusks suggesting that following deglaciation the oceanic conditions controlling the regional reservoir effect rapidly became similar to those of modern times. However, our ΔR value is 352 ± 52 yr less than another correction from eastern Foxe Basin, which may be affected by 14 C dilution from carbonate rocks. Our ΔR value is used to calibrate new marine radiocarbon ages which help further develop the deglaciation history of Southampton Island, especially along the north coast where deglaciation of Foxe Channel appears to have been completed by 8100–7800 cal yr BP (2σ). This provides key chronological constraints on the development of a long marine ice margin in southern Foxe Basin prior to the final breakup of the Foxe ice dome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.