This paper studies the applicability of a deep reinforcement learning approach to three different multi-echelon inventory systems, with the objective of minimizing the holding and backorder costs. First, we conduct an extensive literature review to map the current applications of reinforcement learning in multi-echelon inventory systems. Next, we apply our deep reinforcement learning method to three cases with different network structures (linear, divergent, and general structures). The linear and divergent cases are derived from literature, whereas the general case is based on a real-life manufacturer. We apply the proximal policy optimization (PPO) algorithm, with a continuous action space, and show that it consistently outperforms the benchmark solution. It achieves an average improvement of 16.4% for the linear case, 11.3% for the divergent case, and 6.6% for the general case. We explain the limitations of our approach and propose avenues for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.