-acyl-7-nitroindolines have been used as caged compounds to photorelease active molecules by a one- or two-photon excitation mechanism in biological systems. Here, we report the photolysis of a polypeptide that contains 7-nitroindoline units as linker moieties in its peptide backbone for potential materials engineering applications. Upon two-photon excitation with femtosecond laser light at 710 nm the photoreactive amide bond in -peptidyl-7-nitroindolines is cleaved rendering short peptide fragments. Thus, this photochemical process changes the molecular composition at the laser focal volume. Gel modifications of this peptide can potentially be used for three-dimensional microstructure fabrication.
A 34-amino acid long collagen-like peptide rich in proline, hydroxyproline, and glycine, and with four photoreactive N-acyl-7-nitroindoline units incorporated into the peptide backbone was synthesized by on-resin fragment condensation. Its circular dichroism supports a stable triple helix structure. The built-in photochemical function enables the decomposition of the peptide into small peptide fragments by illumination with UV light of 350 nm in aqueous solution. Illumination of a thin film of the peptide, or a thin film of a photoreactive amino acid model compound containing a 5-bromo-7-nitroindoline moiety, with femtosecond laser light at 710 nm allows for the creation of well-resolved micropatterns. The cytocompatibility of the peptide was demonstrated using human mesenchymal stem cells and mouse embryonic fibroblasts. Our data show that the full-length peptide is cytocompatible as it can support cell growth and maintain cell viability. In contrast, the small peptide fragments created by photolysis are somewhat cytotoxic and therefore less cytocompatible. These data suggest that biomimetic collagen-like photoreactive peptides could potentially be used for growing cells in 2D micropatterns based on patterns generated by photolysis prior to cell growth.
AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors (MISHEMTs) were fabricated on Si substrates with a 10 nm boron nitride (BN) layer as a gate dielectric deposited by electron cyclotron resonance microwave plasma chemical vapor deposition. The material characterization of the BN/GaN interface was investigated by X-ray photoelectric spectroscopy (XPS) and UV photoelectron spectroscopy. The BN bandgap from the B1s XPS energy loss is ∼5 eV consistent with sp2 bonding. The MISHEMTs exhibit a low off-state current of 1 × 10−8 mA/mm, a high on/off current ratio of 109, a threshold voltage of −2.76 V, a maximum transconductance of 32 mS/mm at a gate voltage of −2.1 V and a drain voltage of 1 V, a subthreshold swing of 69.1 mV/dec, and an on-resistance of 12.75 Ω·mm. The interface state density (Dit) is estimated to be less than 8.49 × 1011 cm−2 eV−1. Gate leakage current mechanisms were investigated by temperature-dependent current–voltage measurements from 300 K to 500 K. The maximum breakdown electric field is no less than 8.4 MV/cm. Poole–Frenkel emission and Fowler–Nordheim tunneling are indicated as the dominant mechanisms of the gate leakage through the BN gate dielectric at low and high electric fields, respectively.
The development of gallium nitride (GaN) power devices requires a reliable selective-area doping process, which is difficult to achieve because of ongoing challenges associated with the required etch-then-regrow process. The presence of silicon (Si) impurities of unclear physical origin at the GaN regrowth interface has proven to be a major bottleneck. This paper investigates the origin of Si contamination at the epitaxial GaN-on-GaN interface and demonstrates an approach that markedly reduces its impact on device performance. An optimized dry-etching approach combined with UV-ozone and chemical etching is shown to greatly reduce the Si concentration levels at the regrowth interface, and a significant improvement in a reverse leakage current in vertical GaN-based p–n diodes is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.