Earthworms are widespread soil organisms that contribute to a wide range of ecosystem services. As such, it is important to improve our knowledge, still scanty, of the factors that drive the assembly of earthworm communities. The aim of the present study was to conjointly evaluate the effects on the assembly of earthworm communities of i) soil properties (texture, organic matter content, and pH), ii) grassland management (grassland age, livestock unit, and type of fertilization), iii) landscape diversity (richness, diversity of surrounding habitats, and grassland plant diversity), and iv) presence of hedgerows. The study was conducted in temperate grasslands of Brittany, France. Earthworms were sampled in 24 grasslands and, in three of these grasslands, they were sampled near a hedgerow or near a ditch (control without a hedgerow). Soil properties explained the larger portion of the variation in the earthworm community parameters compared to grassland management or landscape diversity. The increase in soil organic matter content and pH were the most favorable factors for earthworm abundance and biomass, in particular for endogeic species. Regarding grassland management, the increase in the livestock unit was the most damaging factor for earthworm communities, in particular for the anecic earthworm biomass and endogeic species richness. Surprisingly, landscape diversity negatively affected the total earthworm abundance and epigeic earthworm biomass, but it was related to an increase in the epi-anecic species. At a finer scale, we also demonstrated that the presence of hedgerows surrounding grasslands enhanced earthworm species richness, especially within the epigeic and anecic ecological categories. This study highlights that the earthworm ecological categories respond specifically to environmental filters; further studies need to be conducted to elucidate the factors that drive the assembly of earthworm communities at this ecological category level. We recommend that policymakers should act on landscape management to favor earthworm diversity in order to improve the ecosystem services they drive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.