Mobile robot tipover is a concern as it can create dangerous situations for operators and bystanders, cause collateral damage to the surrounding environment, and result in an aborted mission. Algorithms have been developed by others to assess the stability of the robot, and many of these algorithms have been demonstrated using simulated data. In order to verify that these algorithms accurately match real-world behavior, we have collected data of a mobile robot tipping over and then compared this data to the stability measures provided by three algorithms: Zero-Moment Point (ZMP), Force-Angle stability measure (FA), and Moment-Height Stability measure (MHS). A small mobile robot platform based on the iRobot PackBot drove a course including ramps and obstacles; an IMU and GPS provided inertial and positional data for the algorithms, and the actual tipover event is determined from video footage of the tests. The average normalized measure at tipover event initiation was found to be 0.665 for ZMP, -0.094 for FA, and 0.023 for MHS, where a value of 1 corresponds to resting stability. Standard deviations were 0.38, 0.84, and 0.67, respectively. The measures show a significant amount of noise, which is likely due to the vibrations caused by movement of the tracks and could be reduced by employing additional filtering during data collection. The preliminary real-world data validates these tipover algorithms as able to assess robot stability, and they can be used as part of a tipover avoidance system.
The ability to precisely emplace stand-alone payloads in hostile territory has long been on the wish list of US warfighters. This type of activity is one of the main functions of special operation forces, often conducted at great danger. Such risk can be mitigated by transitioning the manual placement of payloads over to an automated placement mechanism by the use of the Automatic Payload Deployment System (APDS). Based on the Automatically Deployed Communication Relays (ADCR) system, which provides non-line-of-sight operation for unmanned ground vehicles by automatically dropping radio relays when needed, the APDS takes this concept a step further and allows for the delivery of a mixed variety of payloads. For example, payloads equipped with a camera and gas sensor in addition to a radio repeater, can be deployed in support of rescue operations of trapped miners. Battlefield applications may include delivering food, ammunition, and medical supplies to the warfighter. Covert operations may require the unmanned emplacement of a network of sensors for human-presence detection, before undertaking the mission. The APDS is well suited for these tasks. Demonstrations have been conducted using an iRobot PackBot EOD in delivering a variety of payloads, for which the performance and results will be discussed in this paper.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.