It has long been understood that many of the same manipulations that increase longevity in Caenorhabditis elegans also increase resistance to various acute stressors, and vice-versa; moreover these findings hold in more complex organisms as well. Nevertheless, the mechanistic relationship between these phenotypes remains unclear, and in many cases the overlap between stress resistance and longevity is inexact. Here we review the known connections between stress resistance and longevity, discuss instances in which these connections are absent, and summarize the theoretical explanations that have been posited for these phenomena. deletions in Caenorhabditis elegans alter the localization of intracellular reactive oxygen species and show molecular compensation. J Gerontol A Biol Sci Med Sci. 2009; 64:530-539. 30. McCord JM, Fridovich I. Superoxide dismutase. an enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969; 244:6049-6055. 31. Walker TK, Tosic J. The ;catalase test', with special reference to acetobacter species. Biochem J. 1943; 37:10-12. 32. Mills GC. The purification and properties of glutathione peroxidase of erythrocytes. J Biol Chem. 1959; 234:502-506. 33. Brenot A, King KY, Janowiak B, Griffith O, Caparon MG. Contribution of glutathione peroxidase to the virulence of streptococcus pyogenes. Infect Immun. 2004; 72:408-413. 34. Larsen PL. Aging and resistance to oxidative damage in. A redox-sensitive peroxiredoxin that is important for longevity has tissue-and stress-specific roles in stress resistance.
A major cause of aging is thought to result from the cumulative effects of cell loss over time. In yeast, caloric restriction (CR) delays aging by activating the Sir2 deacetylase. Here we show that expression of mammalian Sir2 (SIRT1) is induced in CR rats as well as in human cells that are treated with serum from these animals. Insulin and insulin-like growth factor 1 (IGF-1) attenuated this response. SIRT1 deacetylates the DNA repair factor Ku70, causing it to sequester the proapoptotic factor Bax away from mitochondria, thereby inhibiting stress-induced apoptotic cell death. Thus, CR could extend life-span by inducing SIRT1 expression and promoting the long-term survival of irreplaceable cells.
The Saccharomyces cerevisiae Sir2 protein is an NAD ؉ -dependent histone deacetylase that plays a critical role in transcriptional silencing, genome stability, and longevity. A human homologue of Sir2, SIRT1, regulates the activity of the p53 tumor suppressor and inhibits apoptosis. The Sir2 deacetylation reaction generates two products: O-acetyl-ADP-ribose and nicotinamide, a precursor of nicotinic acid and a form of niacin/vitamin B 3 . We show here that nicotinamide strongly inhibits yeast silencing, increases rDNA recombination, and shortens replicative life span to that of a sir2 mutant. Nicotinamide abolishes silencing and leads to an eventual delocalization of Sir2 even in G 1 -arrested cells, demonstrating that silent heterochromatin requires continual Sir2 activity. We show that physiological concentrations of nicotinamide noncompetitively inhibit both Sir2 and SIRT1 in vitro. The degree of inhibition by nicotinamide (IC 50 < 50 M) is equal to or better than the most effective known synthetic inhibitors of this class of proteins. We propose a model whereby nicotinamide inhibits deacetylation by binding to a conserved pocket adjacent to NAD ؉ , thereby blocking NAD ؉ hydrolysis. We discuss the possibility that nicotinamide is a physiologically relevant regulator of Sir2 enzymes.Transcriptional silencing involves the heritable modification of chromatin at distinct sites in the genome. Silencing is referred to as long range repression as it is promoter nonspecific and often encompasses an entire genomic locus (1, 2). In yeast these silent regions, which are similar to the heterochromatin of higher eukaryotes, are subject to a wide variety of modifications (3). Among the best studied of these modifications is the reversible acetylation of histones (reviewed by Refs. 4 and 5).There are two types of enzymes that affect the acetylation state of histones: histone acetyltransferases and the opposing histone deacetylases (HDACs).1 Compared with more transcriptionally active areas of the genome, histones within silent regions of chromatin are known to be hypoacetylated, specifically on the NH 2 -terminal tails of core histones H3 and H4 (6). Three classes of histone deacetylases have been described and classified based on homology to yeast proteins. Proteins in class I (Rpd3-like) and class II (Hda1-like) are characterized by their sensitivity to the inhibitor trichostatin A (TSA) (7,8). Studies using this inhibitor have provided a wealth of information regarding the biochemistry and cellular function of these proteins (reviewed by Ref. 9).Yeast Sir2 is the founding member of Class III HDACs. Sir2-like deacetylases are not inhibited by TSA and have the unique characteristic of being NAD ϩ -dependent (10 -13). Proteins of this class are found in a wide array of organisms, ranging from bacteria to humans. At least two Sir2 homologues, yeast Hst2 and human SIRT2, are localized to the cytoplasm and human SIRT1, a nuclear protein, has recently been shown to target p53 for deacetylation (11,(13)(14)(15). These results i...
Calorie restriction extends lifespan in a broad range of organisms, from yeasts to mammals. Numerous hypotheses have been proposed to explain this phenomenon, including decreased oxidative damage and altered energy metabolism. In Saccharomyces cerevisiae, lifespan extension by calorie restriction requires the NAD+-dependent histone deacetylase, Sir2 (ref. 1). We have recently shown that Sir2 and its closest human homologue SIRT1, a p53 deacetylase, are strongly inhibited by the vitamin B3 precursor nicotinamide. Here we show that increased expression of PNC1 (pyrazinamidase/nicotinamidase 1), which encodes an enzyme that deaminates nicotinamide, is both necessary and sufficient for lifespan extension by calorie restriction and low-intensity stress. We also identify PNC1 as a longevity gene that is responsive to all stimuli that extend lifespan. We provide evidence that nicotinamide depletion is sufficient to activate Sir2 and that this is the mechanism by which PNC1 regulates longevity. We conclude that yeast lifespan extension by calorie restriction is the consequence of an active cellular response to a low-intensity stress and speculate that nicotinamide might regulate critical cellular processes in higher organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.